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Abstract

A typical seismic analysis involves collection of data by
an array of seismometers, transmission over a narrow-band
channel, and storage of data for analysis. Transmission and
archiving of large volumes of data involves great cost. Hence
there is a need to devise suitable methods for compressing
the seismic data without compromising on the quality of the
reconstructed signal. This paper presents our work on the
seismic data compression based on adaptive local cosine
transform and its associated multi-resolution and best-basis
methodology and compares the results with wavelet based
implementation.
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1. INTRODUCTION

The basic idea behind transform coding of images is that the
coefficients of the transformed image are nearly uncorrelated
and have an energy distribution more suitable for coding, than
the pixels in the spatial domain. The optimal transform for
image coding in terms of mean square error is the Karhunen-
Loeve Transform (KLT), but since it is signal dependent and
computationally complex the KLT is not used in practical
applications. Among the various sub-optimal transforms the
Discrete Cosine transform (DCT) is most widely used as it
is signal independent. It is close to the KLT in terms of
energy compaction and rate distortion and has fast network
implementation algorithms. Despite of all its advantages the
DCT based algorithm at low bit rates, exhibits the blocking
effect. The blocking effect is a natural consequence of the
independent processing of each block and its incapability to
adapt to the patterns in the image. It is perceived in images
as visible discontinuities across block boundaries. Seismic
data are quite different from the typical images used in
multimedia applications. It has a very vast data dynamic range
along with significant amount of coherent noise. Also it is a
non-stationary signal with extensive oscillatory nature. Hence
Local Cosine Transform (LCT) is adopted as a new method
for the reduction and smoothing of the blocking effect that
appears in DCT based image-coding algorithms at low bit
rates[4].The principle of overlapping between adjacent blocks
is used with the existing DCT- based encoders by applying a
preprocessing phase on the source image.The idea is to use
smooth cut-off functions to split the signal and to fold the
overlapping parts back into pieces such that the orthogonality

is preserved. The folded signal is suited for representation by
a trigonometric basis. Such a basis is called smooth local
trigonometric basis. These basis functions are nothing but
the trigonometric functions multiplied by smooth bell-shaped
functions.

The implementation is divided into the following sequence:
In the beginning we select the local trigonometric transform
(or basis), which is best adapted to encode the image. Then the
best-basis methodology is applied on the tree of local trigono-
metric expansions. Finally, the coefficients are quantized using
uniform quantization and the sequences of 0s and 1s generated
by uniform quantization are entropy coded using a run-length
technique and Huffman coding scheme. However this paper
does not emphasize on quantization and coding technique.

2. ADAPTIVE LOCAL TRIGONOMETRIC BASES

In order to analyze the local frequency content of the image,
we first cut the support of the image into adjacent blocks. Then
a local Fourier analysis is performed inside each block. To
obtain a better frequency localization, we do not cut the signal
abruptly but we use a smooth window function to localize the
segment of interest. Local cosine/sine bases constructed by
Coifman and Meyer[5] consist of cosines/sines multiplied by
smooth, compactly supported bell functions. These localized
cosine/sine functions remain orthogonal. The basis element
can be characterized by position α, interval I and frequency
index k as follows:
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Where bI(x) is a bell function which is a smooth function
compactly supported in the interval [α−ε, β+ε′] for (α+ε <
β − ε′).This interval contains I = [α, β] which is called its
nominal support. We can control the window width by I , the
left endpoint of the nominal support by the position α and the
frequency by the index k.

The properties of the bell function given by,






bI(x)
2 + bI(2α− x)2 = 1, x ∈ [α− ε, α+ ε];

bI(x)
2 + bI(2β − x)2 = 1, x ∈ [β − ε′, β + ε′];

bI(x) = 1, x ∈ [α+ ε, β − ε′].
(3)



ensure the orthonormality of the bases and afford a fast
algorithm.

Suppose a sequence αj is selected to satisfy
(αj < αj+1) ; ltj→±∞ {αj} = ±∞ and there also
exists an accompanying sequence {εj} such that
(αj + εj ≤ αj+1 + εj+1) for all j ∈ Z. Then the functions
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(j ∈ Z, k = 0, 1, 2, ...) with positive polarity at αj and

negative polarity at αj+1 or

ψαlk(x) =

√

2

αj+1 − αj

b[αj ,αj+1](x)Sin[π(k+
1

2
)
x− αj

αj+1 − αj

]

(5)
(j ∈ Z, k = 0, 1, 2, ...) with negative polarity at αj and
positive polarity at αj+1, form an orthonormal basis for the
space L2(R). A two-dimensional local cosine/sine basis can be
generated by the tensor products ψαxIxkx

(x)ψαyIyky
(y) and

their nominal supports are the Cartesian product rectangles of
the nominal supports of the x and y factors.

3. BELL FUNCTIONS

Fig. 1: The bell function bI (x) [3]

Let β(x) be a continuous function defined on R with the
following properties:

(i):β(x) = 0 if x ≤ −1;
(ii):β(x) = 1, if x ≥ 1;
(iii):β(x)2 + β(−x)2 = 1, for all x.

(6)

In particular, we can use the function β(x) defined as follow-
ing :

β(x) =







0 if x < −1;
Sinπ/4(1 + Sinπ/2x) if −1 ≤ x ≤ 1;
1 if x > 1.

(7)

Hence we define the bell function bI(x) as follows:

bI(x) =

{

β(x − α/ε) x ∈ [α− ε, α+ ε];
β(β − x/ε′) x ∈ [β − ε′, β + ε′];

(8)

By this definition the bell has two parts. The left part is
an increasing function from 0 to 1 and the right part is a
decreasing function from 1 to 0. At the intersection point
between these parts the bell has the value 1 as shown in Fig
1.

4. FOLDING OPERATION

Rather than calculating inner products with the sequences
ψαIk , we can preprocess data so that the standard fast discrete
cosine transform of the fourth type (DCT-IV) or discrete sine
transform of the fourth type (DST-IV) algorithm may be used.
This can be realized by folding the overlapping parts of the
bell functions back into the intervals. Suppose we wish to fold
a signal f(x) back into the interval I = [α, β] Using the bell
function bI(x) defined by Eq.(8), we have
fnew(x) =







f+(x) = bI(x)f(x) + bI(2α− x)f(2α− x), if α ≤ x ≤ α+ ε;
f−(x) = bI(x)f(x) + bI(2β − x)f(2β − x), if β − ε′ ≤ x ≤ β;
f(x), if α+ ε ≤ x ≤ β − ε′.

(9)
The resultant folded data fnew(x) is now defined in the

interval [α, β]. To reconstruct f(x) from fnew(x), we can use
the following unfolding formula:

f(x) =






bI(x)fnew(x) − bI(2α− x)fnew(2α− x), if α ≤ x ≤ α+ ε;
bI(x)fnew(x) + bI(2β − x)fnew(2β − x), ifβ − ε′ ≤ x ≤ β;
fnew, if α+ ε ≤ x ≤ β − ε.

(10)
Edge extension: When the bell shifts to the leftmost endpoint
or the rightmost endpoint of the signal, we cannot directly
obtain f+(x) or f−(x) from the above formula because of
the lack of data in the leftmost and rightmost overlapping
zones. Hence we go for zero-extension. After the procedures
of folding and edge extension, we can apply the fast DCT-
IV/DST-IV to the folded data fnew(x) to obtain the local
cosine/sine transform coefficients.

5. ENTROPY BASED BEST BASIS SELECTION

After we have completed local cosine/sine transforms for all
the preset decomposition levels and also calculated the entropy
of each transformed sub signal, we can use the Coifman
and Wickerhauser fast algorithm[[5]] to search for the local
cosine/sine best-basis.

Adapted waveform analysis uses a library of orthonormal
bases and efficiency functional to match a basis to give a
signal or family of signals. It permits efficient compression of
a variety of signals such as speech and images. The pre-defined
libraries of modulated waveforms include orthogonal wavelet
packets and localized trigonometric functions, have reasonably
well controlled time-frequency localization properties. The
idea is to build out of library functions an orthonormal basis
relative to which the given signal or collection of signals has
the lowest information cost. Several cost functions are useful;
one of the most attractive is Shannon entropy, which has a
geometric interpretation in this context.



1D ALCT: For binary decomposition as shown in Fig 2, if
we fix the window width |I | ; all wavelets in Eq.(4) or Eq.(5)
can form an orthonormal basis for L2(R) and this basis is
called level 1; if we then select |I |/2 as the window width,
the wavelets in Eq.(4) or Eq.(5) can also form an orthonormal
basis and this is called level 2; and so on. Thus, a binary-based
signal decomposition tree consists of the bases at different
levels. However, not all the bases are efficient in matching a
given signal. Therefore, we must pick the best-basis from all
the possible local cosine/sine bases, using a cost-functional.
To search for the local cosine/sine best-basis, i.e. an adaptive
local cosine/sine basis, in order to achieve the best matching
to the signal, a cost-functional is defined based on the entropy
of the decomposed signal. There are numerous cost functional
that can be used. Here, we use Shannon entropy as the cost-
functional [3]], i.e.

E(X) = −Σnpnlog2(pn) (11)

where pn = |xn|
2/||X ||2; X is the signal of length N

samples, xn is the nth component of X and E(X) denotes the
entropy of the signal X . In implementation, we use Coifman

Fig. 2: Binary tree decomposition[[2]]

and Wickerhauser’s fast algorithm to search for the best-
basis based on the Shannon entropy. The main concept of
this algorithm is that the full local cosine/sine tree is pruned
recursively at each node by comparing its entropy to the
summation of the entropy of its corresponding child nodes,
i.e.

if Entropy(parent node) ≤ [Entropy(child1) + En-
tropy(child2)] then cut off the child branches:

Initially, a full binary-based decomposition tree with a
preset maximum decomposition level is produced. The pruning
procedure then starts from the leaf nodes and proceeds towards
the root. At the end of this procedure, an optimal pruned tree is
obtained for the given signal, i.e. an adaptive local cosine/sine
basis is obtained.

6. ADAPTIVE TILING OF IMAGES

As explained in section 5, we can adaptively select the size
and location of the windows with the best basis algorithm.
We consider only tiling that can be generated from separable
bases. We divide the image into four sub squares, and we
consider the local cosine basis associated with this tiling. We

Fig. 3: Quad-tree decomposition of the Image [[2]]

then further decompose each square into four sub squares,
and consider the local cosine bases associated with this finer
tiling. By applying this decomposition recursively we obtain a
homogeneous quad tree-structured decomposition as shown in
Fig.3. As in the 1-D, for each sub block, or node of the quad
tree, we calculate the set of coefficients in the sub block. We
associate a cost for each node of the tree, based on the set of
coefficients, and we find an optimal segmentation of image.

7. EXPERIMENTAL RESULTS

The ALCT method is applied on a standard 2-D marine
seismic data of size 512 x 512 samples and its performance
is evaluated on the basis of compression Ratio (CR) and
SNR as tabulated in Table.1. The performance is compared
with compression using fast bi-orthogonal wavelets along with
Embedded zero tree coding and adaptive arithmetic coding
method[[1]].The original and reconstructed images are as
shown in Fig.4 and Fig.5.

TABLE 1: COMPARISON OF SNR OF THE ALCT METHOD WITH FAST

WAVELET METHOD [[1]] FOR DIFFERENT CR

Compression ALCT Fast Wavelet with
Ratio SNR(db) EZW coding SNR(db)

10 42.6 40.7
20 42.1 40.02
30 33.7 33.4
40 21.08 26.24
50 14.04 17.07

8. CONCLUSION

Compression algorithms, which work well for multimedia
images, such as EZW and SPIHT compression schemes, per-
form poorly on seismic data. However the method presented
in this paper based on Adaptive Local cosine transform are
well suited to capture oscillatory nature of the image. It
is also seen that these algorithms work well on the actual



seismic data giving good compression ratios and SNR. From
the experiments conducted it is seen that presented seismic
data compression algorithms, at moderate compression ratios
of 10:1 to 20:1 are well-suited and safe for seismic data
processing and interpretation.

Fig. 4: The original seismic Image.

Fig. 5: The reconstructed image using ALCT with a compression ratio of
21.1 and SNR of 40.02 db
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