COURSE PLAN AND EVALUATION PLAN

1. Course Code: EC200 2. Course Title: DIGITAL SYSTEM DESIGN

3. L-T-P: **3-1-0** 4. Credits: **4**

5. Pre-requisite: - 6. Teaching Department: Electronics & Communication Engg.

7. Course Instructor: **Dr SUMAM DAVID S.**

8. Course Outcomes:

At the end of the course the student must be able to

- Design combinational circuits using gates, multiplexer and decoders given a set of specifications
- Model combinational circuits using Verilog
- Design non-pipelined sequential circuits using specified/ available SSI & MSI devices given a set of specifications
- Model sequential circuits using Verilog

9. Course Coverage

Module	Contents	Objectives	Lecture	Evaluation
Introduction	Introduction to DSD – Objectives of the course, motivation,	Appreciate the relevance of the	L1	
	course plan, evaluation method, references	course		
Introduction to logic	Logic gates, Boolean algebra, Sum of products and product	Design combinational circuits using	L2 – L9	Design
circuits	of sums forms, Combinational circuit analysis, Minimisation	gates given a set of specifications		
	techniques – K map, Combinational circuit synthesis using	Describe combinational circuits using		
	gates, Introduction to CAD tools, Introduction to Verilog,	Verilog HDL		
	Other combinational minimization techniques			
	Assignment I/Tutorial I			
Number systems &	Positional number systems, representation of negative	Represent and perform arithmetic	L10 – L15	Design
codes	numbers, binary arithmetic – addition, subtraction,	using binary number system		
	multiplication, Design of arithmetic circuits using Verilog	Describe arithmetic circuits using		
		Verilog HDL		
	Assignment II/Tutorial II			·

Combinational logic design	Combinational circuit design using MSI –Multiplexers, Decoders, comparator, priority encoder, Code converters, Design of combinational circuits using Verilog	Design combinational circuits using specified/ available SSI & MSI devices given a set of specifications Describe a combinational system using Verilog HDL	L16-L21	Design
	Assignment III/Tutorial III			
Digital logic families	Logic families, Characteristics of CMOS, Properties of logic elements: Delays - tplh, tphl, Rise time, fall time, Propagation delays; Noise Margin. Hazards – static and dynamic, tristate logic	Appreciate the features of digital logic families	L22-L23	Comprehension
Flip flops, registers and counters	Latches and flip flops, Setup and Hold time, Clock period and frequency, counters, shift registers, Using Verilog constructs for registers and counters	Design of counters given a set of specifications Describe a synchronous counter using Verilog HDL	L24 – L29	Design
	Assignment IV/Tutorial IV			
Sequential logic design	State Machine analysis, Finite state machine design, ASM charts, state minimization, state assignment, synthesis using D-FF and JK-FF, Design of sequential circuits using Verilog, linked state machines **Assignment V/Tutorial V**	Design sequential circuitsgiven a set of specifications Describe sequential circuits using Verilog HDL	L30 – L37	Design
Register Transfer level design	Datapath and control path, Serial adder, shift and add multiplier, Division, RTL modeling using Verilog	Model non-pipelined sequential circuits using RTL approach in Verilog	L37 – L42	Design

10. Reference Books

Stephen Brown, Zvonko Vranesic, Fundamentals of Digital logic with Verilog design, MGH,	J.F.Wakerly, Digital Design Principles and Practices, PH, 1999.		
2014	D.D. Givone, Digital Principles and Design, TMH, 2002		
Morris Mano, MD Ciletti, Digital design with an introduction to Verilog, Pearson, 2015	J. Bhaskar, A Verilog HDL Primer, BSP, 2008		
Ming-Bo Lin, Digital System, Designs and Practices using Verilog HDL and FPGAs, Wiley 2012	NPTEL lectures on Digital Systems		

EVALUATION PLAN:

Mid semester exam - 25% Continuous assessment - 25% End semester exam - 50% Prepared by:

Approved by

Prof. Sumam David S. Course Instructor

Prof Ramesh Kini Head, Dept of E&C and DUGC Chairperson