COURSE PLAN AND EVALUATION PLAN

2. Course Title:

- 1. Course Code:
- 3. L-T-P:

- EC792 3-0-2
- **Digital System Design**
- 5. Pre-requisite: Dr SUMAM DAVID S.

4. Credits: 4 6. Teaching Department: **Electronics & Communication Engg.**

HIGH PERRFORMANCE COMPUTING ARCHITECTURES

- 7. Course Instructor:
- 8. Objectives of the Course:
 - Understand the role of performance in designing computer systems and compare alternate design choices
 - Understand how to design an instruction set and its impact on processor design. ٠
 - To design processor data path and control path for scalar and pipelined systems and Implement a minimal pipelined RISC ISA ٠
 - Understand memory hierarchy design and its impact on overall processor performance ٠
 - Awareness of current design issues in high performance computing systems

9. Course Outcomes:

At the end of the course the student must be able to

CO1: Understand basic aspects of high-performance computer architectures

CO2: Perform quantitative analysis of modern computing systems

CO3: Evaluate the performance of available choices for exploiting parallelism in Instruction, data and memory

CO4: Design a representative high performance computing subsystem/system within the given constraints

Module	Contents	Objectives	Lecture	Evaluation
Introduction	Introduction to COA – Objectives of the course, motivation, course plan, evaluation method, references, combinational, sequential, pipelined architectures	Appreciate the relevance of the course	L1	
	Components of a computer system. Evolution of Technology. Factors affecting computer systems design Performance measures - Benchmark suites, CPI, IPC, speedup, Amdhal's law	•Understand architecture of a basic computer system and its components, role of performance in designing computer systems	L2 – L4	Analysis
Instruction Set Architecture	The role of an instruction set. interface between hardware and software; issues to consider when designing an instruction set; addressing modes.	• Understand how to design an instruction set and its impact on processor design	L5-L7	Comprehension
Computer Arithmetic	Number system, addition and subtract, adders; multiplication and multipliers; division and dividers; floating point numbers and floating point units	 To Implement arithmetic algorithms 	L8-L9	Design

Course Coverage:

Processor Design	Data path and control; single cycle design and implementation; simplifying control design; multicycle implementation of data path and control	• To implement datapath and control path of processors	L10-L14	Design
Single cycle RISC processor implementation	Design a simple RISC processor for a small subset of instructions and implement on FPGA board	•Understanding processor architecture by implementing a small subset of instructions (single cycle)	P1-2	Design
Assembly language programming	Write simple programs in MIPS assembly language and test these on an instruction set simulator	 Understanding architecture and instructions through assembly programming 	P3	Comprehension
Pipelining	Basic concepts in pipelining; data path for pipeline processor implementation, data hazard and forwarding, data hazard and stalling; control design for pipelines, Scheduling (static and dynamic) and forwarding to reduce/ minimise pipeline stalls	 Implement a minimal RISC ISA (MIPS) pipeline Examine techniques to improve pipeline efficiency 	L15-L20	Design
Instruction pipeline visualisation	Using an instruction pipeline visualization tool understand the performance issues related to pipelining	 Understand the performance issues related to pipelining using a simulator 	P4	Analysis
Pipelined RISC processor implementation	Design a pipelined RISC processor for a small subset of instructions and implement on FPGA board Enhance the design to include more instructions	 Implement architectural and performance enhancements 	P5-7	Design
Instruction level parallelism	Dynamic scheduling, hardware speculation, Exploiting instruction level using software approaches – static branch prediction, hardware support, Limits of Instruction level parallelism	 Examine hardware and software techniques for ILP Limits of ILP 	L21-L27	Analysis
Memory Hierarchy	Cache memories - Mapping and replacement policies, reducing misses, reducing penalties, main memory, virtual memory	•Examine techniques to improve memory management	L28-L34	Design
Architectural simulation	Analysing processor and memory performance using architectural simulator	 Understanding memory access patterns and changing cache configuration to analyse the impact on performance using architectural simulator 	P8-10	Design and Analysis
Data Level and Thread Level Parallelism	Data Level Parallelism – Vector, SIMD, VLIW, GPU architectures, multiple instruction issue, Thread level parallelism, centralized shared memory architectures, memory consistency issues, Introduction to Domain specific architectures (DSA)	•Examine ways to improve processor performance by exploiting Data and thread level parallelism.	L35-L39	Analysis

Current trends in	Issues in applications (optimizing the hardware –	Appreciate current trends in VLSI	L40-L42	Comprehension
microprocessor	software interface), ASIP, reconfigurable computing,	architecture		
architectures	asynchronous architectures, future architectures			

9. Course web page : Moodle on iris

10. Reference Books

a)	David Patterson and John Hennessy, Computer Architecture - A	c)	NPTEL/MOOC courses on Computer Architecture
	Quantitative Approach, Elsevier, 6 th Edition, 2019	d)	Recent processor architecture literature
b)	David Patterson and John Hennessy, Computer Organization and Design,		
	The hardware software interface, Elsevier, 6 th edition, 2021		

EVALUATION PLAN:

Mid semester exam- 20%Quiz, Lab assessment, Project- 40%End semester exam- 40%

Prepared by:

Approved by

Dr. Sumam David S. Course Instructor Prof. N. Shekar V. Shet Head, Dept of E&C and DPGC Chairperson