COURSE PLAN AND EVALUATION PLAN

1. Course Code: EC792 2. Course Title: HIGH PERRFORMANCE COMPUTING ARCHITECTURES

3. L-T-P: 3-0-2 4. Credits: 4

5. Pre-requisite: Digital System Design 6. Teaching Department: **Electronics & Communication Engg.**

7. Course Instructor: **Dr SUMAM DAVID S.**

8. Objectives of the Course:

• Understand the role of performance in designing computer systems and compare alternate design choices

Understand how to design an instruction set and its impact on processor design.

To design processor data path and control path for scalar and pipelined systems and implement a minimal pipelined RISC ISA

• Understand memory hierarchy design and its impact on overall processor performance

• Awareness of current design issues in high performance computing systems

9. Course Outcomes:

At the end of the course the student must be able to

CO1: Understand basic aspects of high-performance computer architectures

CO2: Perform quantitative analysis of modern computing systems

CO3: Evaluate the performance of available choices for exploiting parallelism in Instruction, data and memory

CO4: Design a representative high performance computing subsystem/system within the given constraints

Course Coverage:

Module	Contents Objectives		Lecture	Evaluation	
Introduction	Introduction to COA – Objectives of the course, motivation, course plan, evaluation method, references	Appreciate the relevance of the course	L1		
	Review of combinational and sequential design, modelling of digital systems using Verilog and digital system implementation options	Review of Digital System Design	L2-7	Design	
	Modelling of combinational and sequential circuits using Verilog and implementation on FPGAs	Design, implement & test combinational circuits using FPGAs	P1-2	Design	
	Components of a computer system. Evolution of Technology. Factors affecting computer systems design Performance measures	 Understand architecture of a basic computer system and its components, role of performance in designing computer systems 	L8 – L9	Analysis	

Instruction Set Architecture	The role of an instruction set. interface between hardware and software; issues to consider when designing an instruction set; addressing modes.	Understand how to design an instruction set and its impact on processor design (RISC-V)	L10-L13	Comprehension
Assembly language programming	Write simple programs in RISC-V assembly language and test these on an instruction set simulator	Understanding architecture and instructions through assembly programming	Р3	Comprehension
Computer Arithmetic	Number system, addition and subtraction, adders; multiplication and multipliers; division and dividers; floating point numbers and floating point units	To Implement arithmetic algorithms	L14-L17	Design
Processor Design	Data path and control; single cycle design and implementation; simplifying control design; multicycle implementation of data path and control	To implement datapath and control path of processors (RISC-V)	L18-L22	Design
Single-cycle RISC processor implementation	Design a simple RISC-V processor for a small subset of instructions and implement on FPGA board. Enhance the design to include more instructions	 Understanding processor architecture by implementing a small subset of instructions (single cycle) 	P4-6	Design
Pipelining	Basic concepts in pipelining; data path for pipeline processor implementation, data hazard and forwarding, data hazard and stalling; control design for pipelines, Scheduling (static and dynamic) and forwarding to reduce/ minimise pipeline stalls	 Implement a minimal RISC ISA (RISC-V) pipeline Examine techniques to improve pipeline efficiency 	L23-L27	Design
Instruction pipeline visualisation	Using an instruction pipeline visualization tool to understand the performance issues related to pipelining	Understand the performance issues related to pipelining using a simulator	Р7	Analysis
Memory Hierarchy	Cache memories - Mapping and replacement policies, reducing misses, reducing penalties, main memory, virtual memory	Examine techniques to improve memory management	L28-L34	Design
Pipelined RISC processor implementation	Design a pipelined RISC-V processor for a small subset of instructions and implement it	Implement architectural and performance enhancements	P8-10	Design
Instruction level parallelism	Instruction level parallelism and its dynamic exploitation - dynamic scheduling, hardware speculation, exploiting instruction-level parallelism using software approaches - static branch prediction, hardware support, Limits of Instruction level parallelism	 Examine hardware and software techniques for ILP Limits of ILP 	L35-L39	Analysis

Architectural simulation	Analysing processor and memory performance using architectural simulator	 Understanding memory access patterns and changing cache configuration to analyse the impact on performance using architectural simulator 	P11-12	Design and Analysis
Data Level and Thread Level Parallelism	Data Level Parallelism – Vector, SIMD, VLIW, GPU architectures, Thread level parallelism, centralized shared memory architectures, memory consistency issues	•Examine ways to improve processor performance by exploiting Data and thread-level parallelism.	L40-L42	Analysis
Current trends in microprocessor architectures	Issues in applications (optimizing the hardware – software interface), Domain-specific architectures, reconfigurable computing	Appreciate current trends in VLSI architecture	L43-L44	Comprehension

9. Course web page: Moodle on iris

10. Reference Books

a)	David Patterson and John Hennessy, Computer Architecture - A	c)	Brown and Vranesic, Fundamentals of Digital logic with Verilog
	Quantitative Approach, MK, 6 th Edition, 2019		Design, TMH, 2014
b)	David Patterson and John Hennessy, Computer Organization and Design	d)	NPTEL/MOOC courses on Computer Architecture
	RISC V Edition: The Hardware/Software Interface, MK, 2 nd edition 2021	e)	Recent processor architecture literature

E١	/AI	LU	AΤ	ION	PL	AΝ	:

Mid semester exam	- 20%	Quiz, Lab assessment, Project	- 40%	End semester exam	- 40%
-------------------	-------	-------------------------------	-------	-------------------	-------

Prepared by: Approved by

Dr. Sumam David S. Course Instructor

Prof. N. Shekar V. Shet Head, Dept of E&C and DPGC Chairperson