COURSE PLAN AND EVALUATION PLAN

1. Course Code: EC806 2. Course Title: DIGITAL DESIGN USING FPGAS

3. L – T – P: 2-0-3 4. Credits:

5. Pre-requisite: Digital Electronics 6. Teaching Department: Electronics & Communication Engg.

7. Course Instructor: **Dr SUMAM DAVID S.**

8. Objectives of the Course:

At the end of the program the student must be able to

Design digital systems and model using HDL, given a set of specifications Implement digital systems using FPGAs

9. Course Outcomes

CO1 Design simple digital systems given a set of specifications

CO2 Model digital systems using HDL given a set of specifications

CO3 Appreciate architecture of FPGAs and implement digital sub-systems using FPGAs

CO4 Design and Implement digital system using FPGAs for target application

10. Course Coverage:

Module	Contents	Objectives	Lecture/ Lab	Evaluation
Introduction	Introduction to DSD – Objectives of the course, motivation, course plan, evaluation method, references, Digital implementation options	Appreciate the relevance of the course	L1	
	Review of combinational and sequential design using SSI & MSI	Review of Digital Electronics	L2-L5	Design
Digital system modeling	Domains – behavioral, structural, physical, levels of abstraction, Synthesis – high level, RTL level, logic synthesis, Hardware description languages	Appreciate top-down design methodology, need for HDL, and choose level of abstraction for modeling the system	L6 – L7	Comprehension
Familiarisation to design environment	Introduction to digital system modelling using FPGA Design Environment	Using design tools to describe a digital system using Verilog HDL, simulate its functionality, implement & test the design by downloading to FPGA	P1	Design
Verilog	Modelling Combinational, Sequential, FSM, Design case studies, styles for synthesis, test benches,	Model a digital system using Verilog HDL	L8-L15	Design

Programmable ASICs	Architecture of CPLDs and FPGAs, Antifuse, SRAM, EEPROM based technologies, Xilinx, Altera and Actel logic cells, I/O cells, Programmable Interconnect, Dynamic Reconfiguration	Appreciate architecture of CPLDs and FPGAs, choose appropriate implementation option for the given specifications	L16-L20	Analysis
Combinational circuit design	Design of decoders, priority encoders, multiplexers, multi-bit adders and comparators	• Design, implement & test combinational circuits using FPGAs	P2-4	Design
Sequential circuit design	Design of counters, shift registers, sequence detectors, implementation of state machines for applications like traffic light control, digital lock, vending machine etc.	Design, implement & test simple sequential circuits using FPGAs	P5-7	Design
Verilog	Design examples	Model a digital system using Verilog HDL	L21-27	Design
RTL Design	Design of arithmetic units (adders, multipliers, MAC unit, division,, square root), memory units, simple uP	Design, implement and test on FPGAs	P8-9	Design
Interfacing IO devices	Interfacing IO modules and peripheral devices to FPGA board	Design, & interface peripheral devices to the FPGA board	P8-P9	Design
Embedded systems using FPGAs	Embedded system design concepts, Embedded cores on FPGAs, Issues in embedded system design using FPGAs	Appreciate issues in embedded system design using FPGAs	L28-L32	Analysis
	Implementation of embedded systems on FPGA	Implement a simple embedded system on FPGA	P10	Design
Implementing signal processing applications	Implementing digital filters on FPGA	Design and implement digital filters on FPGAs	P11	Design
Design Project	Implementing a digital system using FPGA board	Use FPGA for a signal processing or embedded application	P10-P14	Design

11. Course web page: Moodle on iris

12. Reference Books

a)	Ming Bo Lin, Digital System Designs and Practices using Verilog HDL and	e)	W.Wolf, FPGA based system design, Pearson, 2005
	FPGAs, Wiley, 2008	f)	Peter Ashenden, Digital Design, An embedded systems approach using
b)	J. Bhaskar, A Verilog HDL Primer, BSP, 2008		Verilog, Elsevier, 2008
c)	Brown and Vranesic, Fundamentals of Digital logic with Verilog Design, TMH,	g)	Clive Maxfield, A design warrior's guide to FPGAs, Elsevier, 2004
	2014	h)	https://people.ece.cornell.edu/land/courses/ece5760/FinalProjects/
d)	M D Ciletti, Advanced Digital Design with Verilog HDL, Pearson, 2010		

EVALUATION PLAN:

Mid semester exam - 20% Quiz & Lab assessment - 25% Design Project - 15 % End semester exam - 40%

Prepared by: Approved by

Dr. Sumam David S.

Course Instructor

Prof N Shekar V Shet
Head, Dept of E&C and DPGC Chairperson