
Stereovision based 3D hand gesture recognition for
pervasive computing applications
Vikram Shenoy H∗, Pankaj Bongale∗, Vineet Roy† and Sumam David∗

∗Department of Electronics and Communication Engineering
National Institute of Technology Karnataka, Surathkal, INDIA

Email: vikkyshenoy@gmail.com
†Texas Instruments India, Bangalore, INDIA

Abstract—Hand gesture recognition, being one of the most
intuitive means of Human Computer Interface has spawned
many applications in the area of pervasive computing devices.
This paper presents a solution for hand gesture recognition
problem based on 3D stereo imaging techniques employing a
low complexity algorithm on a low cost sensor. This method
significantly improves upon conventional 2D techniques which
are limited in their approach due to various reasons which
include but are not limited to occlusion, difficulty in establishing
classifiers, segmentation problems using template matching and
noise. The innovation here is the use of a hybrid method that
combines a simple state machine, skin tone detection and stereo
cameras to provide a fast method for detecting simple hand
gestures that can be implemented on most low cost System on
Chips (SoC). The experimental results from the test setup are
promising.

I. INTRODUCTION

In the past few years, we have witnessed a rapid evolution in
the field of Human-Computer Interaction (HCI) which necessi-
tates state-of the art research in the field of gesture recognition.
Accessibility of low-cost webcams has opened up avenues for
a lot of applications in interactive gaming and applications
as hand mouse and other natural user interfaces. Some of the
major application areas are entertainment [1], medical systems
and crisis management applications [2]. Many gaming devices
are developed using Hand Gesture Recognition (HGR) such
as Kinect, Wii and PSP [3].

Being a more intuitive way of user interface compared to
touchscreen, HGR has even attracted researchers in the area
of pervasive computing applications [4]. With the advent of
inexpensive 2D cameras, HGR seemed possible and many
researchers have succeeded in achieving very good results.
Despite this success, there are several challenges which affect
the results of 2D HGR like the presence of background noise
and similar classifiers such as face or other humans. Al-
though some of the studies involving background subtraction
[5] for hand tracking may suggest some improvement, the
very assumption of an inert background might still lead to
misinterpretation.

The challenges associated with 2D HGR have propelled
some researchers to work on 3D HGR because of the possibil-
ity of recognizing more gestures. 3D hand gesture recognition
is made possible using two techniques: Kinect (range vision)
and stereoscopic vision. The basic difference between the

above two methods is that in Kinect, a RGB and an IR sensor
are used whereas in stereoscopic cameras, both sensors are
RGB. Stereo vision based approach was chosen for HGR
as inexpensive stereo cameras are available compared to the
costlier devices with multiple sensors. It is intended for
handheld devices, so we only target image based HGR devices.
The proposed solution can be easily implemented on many
of the SoCs that power todays smart phones. These devices,
with their powerful CPUs, GPUs and image/video accelerators
are already capable of handling multiple camera streams
(front and back camera) in real time. This image processing
capability can be easily tuned to handle two standard definition
stereo images in real time with lens distortion correction. The
rest of the processing can be handled by a combination of
DSPs and SIMD capable vision accelerators. To give an idea,
Fig.1 shows how the software architecture of our proposed
implementation would look like.

Fig. 1: Software architecture of our proposed implementation

II. RELATED WORK

In past decade, many researchers have worked on 2D and
3D hand gesture recognition. Conventional 2D HGR uses
three popular techniques namely colour based [6], motion
based [7] and appearance/model based [8]. Colour based
method involves skin tone detection to separate the hand from
background. Motion based segmentation often involves back-
ground removal or absolute difference between two consecu-
tive frames, thereby tracking only the moving hand. Appear-
ance based techniques either include supervised method like
SVM [9] to learn the user’s gestures or unsupervised method,

where a model based approach is used to fit a hand gesture
model to recognize a gesture [10]. However, analyzing the
scene becomes difficult in case of 2D hand gesture recognition.
3D information helps to mitigate occlusion in complex back-
grounds. However, most researchers were skeptical in using
3D HGR, because of its computational complexity. Taking
into consideration, its advantages and drawbacks, there is a
need to design a simple but computationally faster algorithm
which performs an efficient hand gesture recognition. The
main objective of this work is to develop a 3D hand gesture
recognition for pervasive computing applications like swipe,
scroll, open and close gestures. Although Hidden Markov
Model (HMM)s are very popular in the field of dynamic HGR,
it is not used since the number of dynamic gesture sequences
are small. HMM is preferred for gestures involving numbers,
circles and sign language terms. Thus, a more simpler Finite
State Machine (FSM) based approach for dynamic gesture
recognition is chosen [11]. Prior to this stage, the steps
involved in getting an accurate depth map like undistortion,
stereo calibration, stereo rectification and stereo calibration are
briefly discussed in the next section.

III. STEREO IMAGE PRE-PROCESSING

The main goal is to map the depth data onto an RGB
image so that the foreground hand image from background
objects can be segmented. We, human beings are familiar
with the stereo imaging capability that our eyes give us.
Computers perform this task by finding the correspondence
between points that are seen by one imager and the same
points as seen by the other imager. With such correspondence
and a known baseline separation between cameras, 3D location
of the points can be computed [12]. The brief methodology is
shown in Fig.2

Fig. 2: Flowchart of our proposed methodology

Generating a depth map from left and right camera images
involves the following steps:

1) Stereo calibration
2) Stereo rectification and
3) Stereo correspondence
4) Reprojection

A. Stereo Calibration

Stereo calibration is a onetime operation which generates
a set of values which are then used to correct the distortion

generated by the lens and camera. Mathematical details on lens
distortion correction can be found in [12]. In calibration step,
rotation (R) and translation (T) vectors are found out using (1)
and (2) respectively.

R = Rr(Rl)
T (1)

T = Tr −RTl (2)

where, Rr and Rl are the rotation vectors of right and left
cameras respectively. Similarly, Tr and Tl are translation
vectors of right and left cameras respectively.

B. Stereo Rectification

Stereo rectification is the process of correcting the individual
images so that they appear as if they had been taken by two
cameras with row-aligned image planes [12]. There are two
popular algorithms to perform stereo rectification, Hartley’s
algorithm and Bouguet’s algorithm. Bouguet’s algorithm is
chosen over Hartley’s algorithm to minimize the reprojection
error because of the greater accuracy it offers [12]. Also,
the long-term aim is to employ this module to manipulate
a pervasive computing device so not having an idea of the
scale of the image (drawback of Hartley’s algorithm) would
be unacceptable.

C. Stereo Correspondence

This step gives us a disparity map, where the disparities
are the differences in x-coordinates on the image planes of
the same feature viewed in the left and right cameras [12].
Based on the horizontal distance between the locations of a
point in the two images and a set of predefined constants, a
disparity image is generated. Once the physical coordinates
of the cameras or the sizes of objects in the scene are known,
depth measurements can be derived from the triangulated
disparity measures d = xl - xr or d = xl - xr - (cleftx - crightx)
if the principal rays intersect at a finite distance between the
corresponding points in the two different camera views which
is illustrated in [12]. Block-matching algorithm was used to
perform stereo correspondence.

Block-matching algorithm: This algorithm was developed
by Kurt Konolige [13]. The block matching algorithm was
chosen over Graph Cut (GC) algorithm since it is faster
compared to GC [14]. This algorithm finds only the strongly
matching (high-texture) points between the two images. Block
matching algorithm works by using small “sum of absolute
difference” (SAD) windows to find matching points between
the left and right stereo rectified images. SAD window C(x,y,δ)
is mathematically represented as,

C(x, y, δ) =

wh−1∑
y=0

ww−1∑
x=0

|IR(x, y)− IL(x+ δ, y)| (3)

where, wh is the window height, ww is the window width, δ
is the differential value, IL(x+δ, y) and IR(x, y) is the image
intensities corresponding to left and right images.

D. Reprojection

If the geometric arrangement of the cameras are known,
then the disparity map can be turned into physical distances by
triangulation. The output is a depth map. For a given disparity
d and 2D point (x, y), a point can be projected into three
dimensions using (4) as mentioned in [12].

Q

x
y
d
1

 =

 XY
Z
W

 (4)

where

Q =

1 0 0 −cx
0 1 0 −cy
0 0 0 f
0 0 −1/Tx (cx − c′x)/Tx

 (5)

is the re-projection matrix which is the inverse of the pro-
jection matrix. In this matrix, cx and cy are the principal
points and 2D-screen co-ordinates are (x/w, y/w). cx is the
principal point x-coordinate from right image for Q matrix of
left image. Tx is the translation vector. 3D co-ordinates are
given by X/W,Y/W,Z/W. The depth Z is calculated as,

Z =
fT

xl − xr
(6)

where, f is the focal length of camera and T is the baseline
distance. xl and xr is the position of left and right camera
respectively.

IV. IMPLEMENTATION

A. Hand detection

Usually, hand detection is implemented either by using
background removal (provided the hand is moving) or skin-
tone detection. However, face regions are also visible when
skin tone detection is used. Hence, a hybrid method involving
both skin colour detection and then depth mapping is used so
as to separate out hand from rest of the background.

A skin tone detection model has been built using multiple
thresholding of different colour spaces namely YCbCr, HSV
and RGB. This takes care of illumination variance and similar
coloured background. Most suitable ranges in YCbCr colour
space are obtained from algorithm proposed by [15]. Similarly,
thresholds in RGB colour space are rooted in the work
presented by [16]. Finally the thresholds in HSV colour space
are set based on the results shown by [17]. Later on, the
depth information is used to distinguish between the hand
as foreground object and everything else (including face) as
background object. This method has been earlier used by [18],
however for depth data, they had used Time of Flight (ToF)
cameras instead of stereo camera. Using a face detector (i.e.
OpenCV) on the RGB image, the position (x, y) and size (w,
h) of the face can be determined. The distance from the face
to the camera can be estimated as the average depth values of
the face dface as,

dface =
1

wh

x+w∑
i=x

w+h∑
j=y

I ′stereo(i, j) (7)

where, I ′stereo is the projected depth image. If the face is
occluded, the previous position and distance is used. All the
objects in front of the face can then be found by applying a
fixed threshold ts. It defines how far the user has to extend the
hand towards the camera for it to be accepted as an interaction.

B. Gesture Recognition after getting depth map

Since this study involves only six gestures like palm open,
grab (close), swipe left, swipe right, scroll up and scroll down,
a simple Finite state classifier is sufficient. However, it should
be noted that if complex gestures like circle, Arabic numbers
(0-9) are to be recognized, then HMM is required. Palm
open and close gesture are static, swipe and scroll gestures
are dynamic. The methodology is presented in Fig.3. The
methodology is based on the fact that, while using HGR for
smartphone/ tablet interface, no other objects are present in
between stereo camera and user’s hand. Hence, the depth
information to distinguish between hand (foreground object)
and the rest of background is used. The static gestures are
recognized by using the pixel count for last 10 consecutive
frames. If it is greater than the threshold (in our case,
τ = 6000), then it is palm open or halt gesture else it is
close or grab gesture. This can be actually used to select the
application running on a smartphone or tablet if the previous
gesture is open and current gesture is close. Once this is done,
dynamic gestures are recognized as follows,

C. Dynamic Gesture recognition

To track the movement of the palm in the respective
dimension, counters dx, dy and dz are used . In every new
frame, it is examined whether the hand has been stable in
the last 10 frames. Handstable consists of two states : open
and close. In case of a stable hand, Handstable is updated and
counters are reset. Otherwise, the absolute displacement of the
palm in the last two frames is added to the counters.

Fig. 3: Finite state machine for gesture recognition

dtx = dt−1x + |P t
palmx− P t−1

palmx| (8)

dty = dt−1y + |P t
palmy − P t−1

palmy| (9)

where, P t
palm is the position of the palm in current frame and

P t−1
palm is the position of the palm in previous frame. After

this, the displacement −→v between the palm position of the
last stable hand model Handstable and the recent hand model
Handt is computed as,

−→v = P t
palm − P stable

palm (10)

Next, the direction in which −→v has the maximum absolute
value is determined. Only the swipe gestures that occur in
this dimension are considered. Both X-dimension and Y-
dimension are considered analogous. For a given direction of
swipegesture, the absolute sum of the displacement of motion
in other two dimensions should not exceed a threshold. If it
exceeds, then the counters di in the direction i = x, y, z will
be reset.

The swipe and scroll gestures are recognized based on the
direction of the vector vx and vy , i.e
vx < 0, the swipe gesture is towards left
vx > 0, the swipe gesture is towards right
vy > 0, the scroll gesture is towards up
vy < 0, the scroll gesture is towards down

V. EXPERIMENTAL RESULTS AND DISCUSSION

Minoru3D, an inexpensive 3D stereo camera is used for
stereo imaging. Its resolution at 30fps is 320x240 and 640x480
for < 15fps. Although this is at the lower end of our
requirements a resolution of 320x240 is sufficient for our
experiments. Skin tone detection is implemented prior to depth
map generation. Results obtained from multiple thresholding
based skin colour detection is shown in Fig.4

Fig. 4: results of skin tone detection

Pictures of a 8x5 chessboard were taken for stereo cal-
ibration. A total of 160 different pairs of pictures were
taken with the chessboard held in different inclinations.
Rotation and translation matrices were calculated for each
of these pairs, hence a total of 160 pairs of matrices.
cvStereoCalibrate() function in OpenCV was used
to generate these matrices which were then approximated
using Marquardt iterative algorithm into one pair (R,T) with

minimum error of chessboard corners for both camera views
[12].

An OpenCV function called cvStereoRectify() cor-
responding to Bouguet’s algorithm was used. Then the
output of the function was fed to another function
cvInitUndistortRectifyMap() which completes the
stereo rectification step on the two images. The result after
rectification is applied to one pair (out of the 160 pairs) of
images is shown in the Fig.5

Fig. 5: Result images after stereo rectification

cvFindStereoCorrespondenceBM(), an OpenCV
function based on efficient block matching stereo algorithm
is used for getting depth map. In our study, SAD window of
size 9 is used.The stereo correspondence result obtained from
block matching algorithm is shown as colour depth map in
Fig.6. It can be observed that the colour intensity changes as
the object gets closer.

Fig. 6: colour depth map

The performance assessment was done using 20 test cases
for each gesture and we achieved overall accuracy of 93.75%
within the nominal distance of 1 feet from the Minoru 3D
camera. As the Minoru 3D’s field of view is 40 degrees, the
minimum distance from which the gesture to be made is 9 cm.
However, the HGR accuracy reduces as the distance between
the user and the camera increases, which is presented in Fig.8.

The breakup of computational loads for different algorithms
is given by [19]. They report that most of the computational
complexity arises from computation of depth/disparity map
(41%) and object segmentation (53%), tasks which can be
allocated to two different processors in a pipelined fashion.
(Two middle blocks in the proposed architecture shown in

Fig. 7: results of various gestures

Fig. 8: Performance assessment of various gestures with
respect to the distance between user and Minoru 3D webcam

Fig.1). The SIMD capable vision accelerator is ideally suited
for calculating disparity maps as it involves parallel processing
of large chunks of data and a lot of FIR filters. A DSP
with its similar but more extensive capabilities is capable of
handling object segmentation while most of the control code
can be offloaded to the main CPU which is designed for
such tasks. As our software implementation has been built
entirely using OpenCV, the task of porting the kernels to the
hardware is easier as ports of OpenCV already exist on most
SoC platforms.

VI. CONCLUSION

With 3D stereovision techniques, a depth map is generated
along with skin-tone detection to differentiate the hand from
the background. With this we could successfully recognize 6
gestures: palm (open), fist (close), scroll up, scroll down, swipe
left and swipe right. With all the results achieved so far, it can
be concluded that the proposed method can be used to easily
implement simple Gesture Recognition for many pervasive
computing applications.

VII. ACKNOWLEDGEMENT

We would like to thank Mr Aravindan, Texas Instruments
India for his support throughout the project.

REFERENCES

[1] S. Siddharth and A. Agrawal, “A Vision based Hand Gesture Interface
for Controlling VLC Media Player,” International Journal of Computer
Applications, vol. 10, pp. 11–16, 2010.

[2] S. Mitra, “Gesture Recognition: A Survey,” IEEE Trans. on Systems,
Man and Cybernetics Pat-C: Applications and Reviews, vol. 37, pp.
311–324, 2007.

[3] M. Mariappan, X. Guo, and B. Prabhakaran, “Picolife: A Computer
Vision-based Gesture Recognition and 3D Gaming System for Android
Mobile Devices,” in Proc. of International Symposium on Multimedia.
IEEE Computer Society, 2011, pp. 19–26.

[4] M. Wright, L. Chun-Jung, E. O’Neill, D. Kosker, and P. Johnson, “3D
Gesture Recognition: An Evaluation of User and System Performance,”
in Proc. of 9th International Conf. on Pervasive Computing 2011. Vol.
6696 LNCS.Lecture Notes in Computer Science . Springer-Verlag, 2011,
pp. 294–313.

[5] Q. Chen, “Real-time Vision-Based Hand Tracking and Gesture Recog-
nition,” Ph.D. dissertation, School of Information Technology and
Engineering, Ottawa-Carleton Institute for Electrical and Computer
Engineering,University of Ottawa, 2008.

[6] T. Starner and A. Pentland, “Real-time Americal Sign Language recog-
nition using desk and wearable computer based video,” IEEE Trans. on
Pattern Anal. and Mach. Intell., vol. 20, pp. 1371–1375, 1998.

[7] H. Sidenbladh, “Detecting human motion with Support Vector Ma-
chines,” in Proc. of the 17th International Conf. on Pattern Recognition.
Vol. 6696 LNCS.Lecture Notes in Computer Science . Springer-Verlag,
2004, pp. 188–191.

[8] J. Guo, “Hand Gesture Recognition and Interaction with 3D Stereo
Camera,” in Project report of COMP8740, 2011.

[9] Y. Chen and K. Tseng, “Multiple-angle Hand Gesture Recognition by
Fusing SVM Classifiers,” in CASE, 2007, pp. 527–530.

[10] Y. Wu, J. Lin, and T. Huang, “Capturing Natural Hand Articulation,”
in Proc. of Eighth IEEE International Conf. on Computer Vision, ICCV
2001., vol. 2. IEEE, 2001, pp. 426–432.

[11] J. Davis and M. Shah, “Visual gesture recognition,” in IEEE Proc. of
Vision, Image and Signal processing, 1994, pp. 101–106.

[12] G. Bradksy and A. Kaehler, Learning OpenCV- Computer Vision with
OpenCV library. Newgen Publishing and Data Services.

[13] K. Konolige, “Projected Texture Stereo,” in IEEE International Conf.
on Robotics and Automation, 2010, pp. 148–155.

[14] S. Droppelmann, M. Hueting, S. Latour, and M. van der Veen, “Stereo
vision using the opencv library,” 2010.

[15] D. Chai and K. Ngan, “Face feature extraction using skin colour map
in videophone applications,” IEEE Trans. on Circuits and Systems for
Video Technology, vol. 9, pp. 551–564, 1999.

[16] P. P. J. Kovac and F. Solina, “2D versus 3D colour space face detection,”
in Fourth EURASIP Conf. on Video/Image processing and Multimedia
Communications, 2003, pp. 449–454.

[17] S. Tsekeridou and I. Pitas, “Facial feature extraction in frontal views us-
ing biometric analogies,” in Proc. of the IX European Signal Processing
Conference, vol. 1, 1998, pp. 315–318.

[18] M. Bergh and L. Gool, “Combining RGB and ToF Cameras for Real-
time 3D Hand Gesture Interaction,” in Proc. of the IEEE Workshop on
Applications of Computer vision (WACV 2011), vol. 1, 2011, pp. 66–72.

[19] K. Dong-lk and G. Agarwal, “Gesture recognition: Enabling natural
interactions with electronics,” white paper, Texas Instruments, pp. 1–13,
2012.

