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Abstract— In this paper, we propose an adaptive reconfigurable 
architecture for image denoising. First part of this paper outlines an 
efficient noise detection hardware for Gaussian & impulse noise 
detection and suitable filters for denoising. With a robust noise 
detection method including a novel Gaussian noise detection method, 
we also explore the dynamic detection of noise in an image giving 
adaptability to the architecture for a better quality of denoising. 
Proposed architecture includes a decision making unit to find out the 
presence of noise as well as type of the noise, based on which a 
suitable filter is employed during run-time. An onboard 
microprocessor controls the reconfiguration and dataflow. Proposed 
architecture is tested on Xilinx Virtex-6 FPGA with localized noise 
and mixed noise conditions and it gives superior performance 
compared to the standard filters used. High quality denoising is 
achieved with simple filters on a reconfigurable region utilizing 
smaller area and lesser hardware resources. 

Keywords—dynamic reconfiguration; image processing; image 
denoising; adaptive architectures; FPGAs. 

I.  INTRODUCTION  
Image processing applications are widely used across various 

domains including computer vision, artificial intelligence, pattern 
recognition, video processing, bio-medical applications etc. One 
of the most challenging and well explored area of image 
processing is image denoising, where the goal is to recover the 
original image by removing unwanted components or noise.   

Noise in an image is an undesirable content which gets added 
during the image acquisition due to noise in electronic circuitry, 
due to poor illumination or other atmospheric conditions or due to 
sensor nonlinearities. Several methods have been explored for 
image denoising, both in frequency domain [1-3] and spatial 
domain [4-7]. Most common types of noise include Gaussian noise 
and impulse noise (salt-pepper noise). Gaussian noise generally 
appears due to the poor illumination [8] and is often removed using 
mean filter. Impulse noise usually appears due to errors in analog 
to digital conversion or bit errors in transmission [9] and is best 
removed using median filter. Often a part of the image does not 
contain any noise, thus needs no filtering. Hence, it is clear that 
applying a filter uniformly over the complete image is not always 
the best choice. 

Several methods have been proposed for noise detection, 
mostly aimed at impulse noise detection [5,10]. However, 
detection of Gaussian noise is relatively a less explored area. 
Linear filters used for removing Gaussian noise are simpler to 
implement but may smoothen out the edges, whereas edge 
preserving bilateral filters are too complex to implement. In this 
paper, we propose a novel method to detect Gaussian noise which 
helps to retain the edges and sharpness of the image. This paper 
aims to address noise removal in images corrupted by more than 
one type of noise or localized noise. 

Reconfigurable architectures are known for their combined 
advantage of both area & speed optimization of ASICs and 
flexibility of general purpose processors. Partial reconfiguration 
allows a part of the logic to be modified during run-time while rest 
of the logic continues to run intact, thus allowing to fit more logic 
in a given area. As improvements in high performance computing 
are largely driven by multi-core platforms and GPUs, they 
continue to suffer from disadvantages like fixed data path which 
forces them to use general purpose architectures. SIMD workloads 
like image processing are often well executed on a dedicated 
hardware rather than general purpose computing systems [11,12], 
where reconfigurable architectures can perform a better job. 

Major issues to be addressed in the design of a reconfigurable 
system are why, how, when and what to reconfigure. We have 
already established the need of reconfiguration in image 
processing applications. We use Xilinx Partial Reconfiguration 
(PR) tool [13,14] for reconfiguration on FPGA. Microblaze 
processor running on the FPGA controls the reconfiguration using 
ICAP (Internal Configuration Access Port). We propose a control 
unit to take decision on what and when to reconfigure. The 
processor is interfaced with detector and reconfigures suitable 
filter in the filter module based on the code running on the 
processor. 

Rest of the paper is organized as follows. Section II describes 
the methods used for image denoising while section III describes 
the algorithms used for detection of type of noise. Section IV 
details about the proposed architecture, Section V explains the 
experimental methodology, environment and results. 
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II. NOISE DETECTION METHODS 
We propose a novel three stage pipelined architecture for noise 

detection to detect both impulse noise and Gaussian noise. Both 
detectors are combined to generate a custom IP to interface it with 
the Micro-blaze processor with AXI protocol. This IP generates a 
two bit noise_det signal to indicate the type of noise. Each bit of 
noise_det signal represents output of each detector. 

A. Gaussian Noise Detection 
In Gaussian noise, pixel values vary slowly compared to their 

neighbors, where the distortion follows a normal distribution 
against the frequency of its occurrence. Detection of Gaussian 
noise accurately is relatively difficult compared to the impulse 
noise detection as the corrupted pixel values are not unusually 
high or low compared to their neighboring pixels. 

The distortion added by the Gaussian noise to the original 
value results in increase of the variance of pixels values in a 
window. However, higher value of variance can indicate two 
things: 

� Presence of noise 
� Presence of an edge 

 
Thus applying a smoothening filter like mean filter can potentially 
smoothen the edges leading to the deterioration of image quality. 
Here we propose a two stage detection of Gaussian noise which 
can differentiate between regions that contain no noise or an edge 
with regions that are corrupted by Gaussian noise. 

Stage 1 differentiates the regions that contain noise with 
regions that may have an edge or corrupted by noise. Stage 2 
further differentiates the regions that are corrupted by noise with 
regions that contain an edge.  

 
      Stage 1 calculates the variance of all the pixels in the 3x3 
window which is compared with the pre-defined threshold value, 
Thvar as shown in (1), 
 

��� = ∑ ∑ ( �(�, �) −  	 )�
��
��
9  

 
where 	 represents the mean of all pixels in the window and ���   
represents the variance of the window. 

 

�����_���� = �1, ��� > �ℎ���
0, ��ℎ������  

 
where noise_edge signal depicts the presence of noise or edge in 
the window. If noise_edge signal is high, 3x3 window is passed 
to stage 2, and if noise_edge signal is low, it represents the 
absence of noise. 
 
      Stage 2 differentiates between noise and edge using difference 
vectors. For a small window size, edges become piecewise linear 
as shown in Fig. 1.a, thus making the difference vectors as shown 
in the Fig. 2 to contain huge spikes. But noise, which is uniformly 
distributed as shown in Fig. 1.b, will not result in any spike in the 
magnitude of difference vectors along any direction.  
 
 

 
 
 
 
 
 
 
 
 
 
 
Thus, difference vectors are calculated as, 
 
� =  |�(� − 1, � + 1) − �(� + 1, � − 1)| 
�� =  |�(�, � − 1) − �(�, � + 1)| 
�
 =  |�(� + 1, � − 1) − �(� − 1, � + 1)| 
�� =  |�(� − 1, �) − �(� + 1, �)| 
where D1-D4 represents the difference vectors in four directions 
and i(x,y) represents the pixel value at co-ordinates (x,y) as 
depicted in Fig. 2. 
 
 
                
 
 
 
 
 
 
 
 
 
 
 

Magnitudes of difference vectors in all directions are 
compared to obtain the maximum difference, max (�). Based on 
(4), detector finalizes the result as, 

�����_��� = �1, max (�) < �ℎ!"##
0, ��ℎ������  

where max (�) represents the maximum difference value and 
�ℎ!"##  represents the maximum threshold of differences for edge.   
      Threshold values, Thvar and Thdiff, to give the best detection 
performance were heuristically obtained after extensive 
experiments and training on several 8 bit grayscale images. 
      A three stage pipelined hardware was developed for Gaussian 
noise detection for the proposed method as depicted in Fig. 3. 
 

             

Fig. 3.  Gaussian Noise Detector architecture 

          
(a)                                           (b) 

        Fig. 1.  Edge(a) and Noise(b) represented in a sub-window 

(1) 

(2) 

(3) 

(4) 

 
                  Fig. 2.  Difference Vectors 
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B. Impulse Noise Detection 
Impulse noise, often referred to as ‘salt and pepper’ noise 

contains black pixels in white region or white pixels in black 
region. Corrupted pixels contain unusually high or low values 
compared to their neighbours. Impulse noise detection is a well 
explored area. We use a part of the design proposed by Pei-Yin 
Chen et al [10] for impulse noise detection.  

Let i(x,y) represent the central pixel value of the 3x3 window. 
Then thresholds Thmax and Thmin are defined as, 

 

        �ℎ$�� = �2 %$��, ( 2 %$�� ) < 255
255, ��ℎ������   

 

  �ℎ$"& = �2 %$"& − 255, ( 2%$"& ) > 255
0, ��ℎ������  

 

where Imax and Imin represent minimum and maximum pixel values 
in the window respectively. To classify the pixel as corrupt or not, 

�����_��� = �1,  �(�, �) ≥ �ℎ$�� �� �(�, �) ≤ �ℎ$"&
0, � ≥ 0   

 

Based on the above criterion, a three stage pipelined architecture 
is proposed, as depicted in Fig. 4. 

 

 

 
 
 
 
 
 
 
 
 
 
 

C. Proposed Implementation 
      Based on Impulse and Gaussian noise detectors described, we 
design the noise detection system as shown in Fig. 5. 
 

 
              

Fig. 5.  Complete Noise Detection architecture 

III. IMAGE DENOISING 
We consider a 3x3 moving window to apply the filters for 

corrupted pixels on an 8 bit grayscale image. 

A. Median filter 
Median filter is a widely used non-linear filter known for its 

edge preserving quality and simple implementation. Here every 
corrupted pixel is replaced with the median of its neighbors. For a 
window, it can be performed by sorting its columns, then its rows 
and finally the median is obtained by sorting the diagonal. 

We employ a three stage architecture as depicted in Fig. 6.  

 
                          Fig. 6.  Median Filtering Scheme 

B. Gaussian filter  
Linear smoothening filters like mean filter and Gaussian filter 

can effectively denoise the images affected by Gaussian noise, but 
they smoothen out the edges thereby reducing the image quality.  

Many methods have been explored [19-21] to denoise the 
image while preserving the details, but are too complex for a 
hardware implementation. We employ a filter similar to the 
method used in [18] and implement it on hardware as shown in 
Fig.8. This method implements a low pass filter where the cut-off 
is based on the variance of the window. Also, this method makes 
use of variance, which is available from the noise detection stage. 

In the window corrupted by Gaussian noise, absolute 
difference is calculated between central pixel and other pixels. 
Mean of all such pixels which satisfies (8) is calculated to replace 
the central pixel.  

|�(�, �) − -|� < �ℎ./3���  

where i(x,y) represents pixel values, - represents central pixel 
value and �ℎ./3 represents a threshold value for the low-pass filter 
which can be heuristically estimated for the best performance. 

 Fig.7. describes an efficient three stage pipelined 
implementation of the filter. Stage 1 generates the threshold value 
for the low-pass filter and the differences of all pixels with central 
pixel calculated in parallel. Stage 2 squares the difference values 
and compares it with threshold in parallel. Based on the results of 
stage 2, mean is generated to replace the central pixel. 

 
             Fig. 7.  Filter for Gaussian Noise removal 

(7) 

(6) 

(5) 

 

(8)  
          
        Fig. 4.  Impulse Noise Detector architecture 
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IV. SYSTEM ARCHITECTURE 
      The architectures described in previous sections are combined 
to perform image denoising on a reconfigurable platform. Noise 
Filter is the reconfigurable region where suitable filter is 
instantiated based on the result of noise detection module during 
run-time. Processor can communicate with these two modules 
using AXI interconnect block and can perform reconfiguration 
using AXI hardware ICAP. This section describes the details of 
the architecture. 

A. MicroBlaze Processor & AXI Interconnect 
We use a MicroBlaze processor with AXI interconnect along 

with other peripherals as shown in fig. 9. We use AXI Hardware 
ICAP for reading and writing to the FPGA configuration memory. 
The choice of the partial bit file to be reconfigured is based on the 
input to the processor from noise detectors in real time. Along with 
the peripherals, we interface two custom IPs to AXI interconnect 
block.  

The custom IPs include noise_detector_v1_00 for noise 
detection and noise_filter_v1_00 for filtering which implement 
logics that are described in section III and IV. Reconfigurable 
partition is present within noise_filter_v1_00 IP and suitable 
partial bit files which are designed externally with similar inputs 
and outputs are loaded onto the logic dynamically based on the 
choice made by the processor.  

B. Pixel Processor 
 We propose a novel Pixel Processor (PP) as depicted in system 
diagram as shown in Fig. 9. Pixel processor performs the noise 
detection and filtering operations on a sub-window, which here is 
a 3x3 window. A pixel processor for denoising consists of two 
major blocks. The pixel processor receives a 3x3 window and 
outputs one pixel value which will be stored at a location based on 
input index as a part of the denoised image. 

Noise detector block takes a window of the image and 
performs both impulse and Gaussian noise detection and gives a 
two bit result.  Noise filter block takes the window of the image 
and performs the filter operation to give the filtered output. This 
block is the block that performs reconfiguration and is 
reconfigured dynamically. 

 
     Fig. 8. SIMD processor made up of Proposed Pixel Processors 

 Since all the operations performed on the window are 
independent, these pixel processors can be replicated to form an 
SIMD processor exploiting data parallelism yielding high 
throughput as shown in Fig. 8. However, this paper describes the 
complete architecture of one pixel processor optimized for the best 
performance.     

     Since we use a moving window which accesses consecutive 
memory locations, such SIMD processor can make best use of 
burst access of the AXI interconnect to reduce the memory 
overhead.  

C. Dynamic Reconfiguration Details 
      Power and performance efficient architectures for the 
detectors and filters are designed using Verilog and integrated 
into two custom IPs, namely noise_detector_v1_00 and 
noise_filter_v1_00.  Based on architectures for both the filters, we 
generate the bitfiles to be stored as partial bitfiles for 
reconfiguration. 

For the complete system, netlist is generated which 
represents the static region in the system. Suitable software for 
the processor to perform reconfiguration is designed. Using 
Xilinx PlanAhead tool, floorplanning is performed. Based on the 
resource requirements, reconfigurable partition sizes are defined. 

Fig. 9. Represents the complete system overview with a 
single pixel processor connected to the AXI interconnect. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

V. EXPERIMENTAL RESULTS 

A. Experimental environment 
The proposed architecture was implemented on Xilinx Virtex-

6 ML605 evaluation board with Xilinx ISE v14.5 and Partial 
Reconfiguration (PR) tool for ISE. Test image used was Lena 
256x256, 8 bit grayscale image. 

 
Fig. 9. System Overview 
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B. Experimental methodology 
We added following types of noises: 

1. Gaussian noise 
2. Impulse (Salt – Pepper) noise 
3. Gaussian and Impulse mixed noise where variance and 

density of the noise is increased simultaneously.  
We tabulated following parameters of the image to check the 
effectiveness of the implementation: 

1. Peak Signal to Noise Ratio (PSNR), calculated as, 
 

4678 = 10 log:( 255� /  ?6@) 
where Mean Square Error (MSE), calculated as,  

?6@ = A 1
BB�

C D DE%(�, �) − �(�, �)F�
$G

��

$H

��
 

2. Image Enhancement factor (IEF), 

%@I = ∑ ∑ E%(�, �) − 7(�, �)F�$G��
$H��

∑ ∑ E�(�, �) − 7(�, �)F�$G
��

$H
��

 

where m1 and m2 represent the number of rows and columns, I 
represents original image, D represents denoised image and N 
represents the noisy image. 
   

(9) 

(10) 

(11) 

                     Fig. 10. IEF with Gaussian noise                                                    Fig.12. IEF with Gaussian noise                                

                     Fig.14. IEF with overlapping Gaussian & Impulse noise                       Fig.15. PSNR with overlapping Gaussian & impulse noise 

C. Results 
Fig. 10-15 show the experimental results obtained for the test 
image with noises added.      
 
      Clearly, proposed method outperforms the standard filters 
significantly. This is possible due to the two important 
advantages the proposed architecture has: 

1. Filtering is performed only when noise is found. 
2. Used filter is best suited for the type of noise found. 

The advantage reflects more in the case of mixed noise, where 
image is corrupted by both impulse and Gaussian noise. This is 
possible due to the adaptive nature provided by the dynamic 
reconfiguration.   
       Although it is difficult to accurately measure the 
reconfiguration time[22], it is possible to calculate the 
reconfiguration overhead based on hardware specifications. 
ICAP used in Virtex-6 platform runs at 100 MHz with a 
bandwidth of 3.2 Gbps[13] and the biggest partial bitstream is  
of the size of 355 kilobytes. Thus, the worst case reconfiguration 
time is approxilately 0.88 ms. This overhead can be masked 
using the proposed SIMD processor made up of multiple pixel 
processors as shown in Fig.8. 
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TABLE V 
Synthesis Report for XC6VLX240T FF1156 device 

 
Particulars 

Impulse 
Noise Filter 

Gaussian 
Noise Filter 

Noise 
Detector 

Slice Registers 8 95 69 
Slice LUTs 315 595 322 

IOs 82 82 84 
Bonded IOBs 82 81 75 

DSP48E1s 0 8 8 
Logical delay 3.718 ns 5.82 ns 8.612 ns 

 
      Table V shows the synthesis report for filters and noise 
detector. Reconfigurability of the filter module allows us to 
implement both impulse and Gaussian filters at the hardware 
usage of only Gaussian filter, thereby saving around 50% of the 
hardware resources per pixel processor. This saving is very 
significant when multiple pixel processors are instantiated as 
depicted in Fig. 8, thus masking the area overhead due to ICAP 
module added for reconfiguration. 

VI. CONCLUSION 
We have proposed a novel algorithm for Gaussian noise 

detection and proposed a noise detection unit. We have shown 
that the proposed implementation performs better denoising 
compared to other standard filters under various noise conditions. 
The main reason for the improvement can be attributed to the 
adaptive nature of the denoising scheme during run-time provided 
by dynamic reconfiguration.  

Robust noise detection scheme not only helps to apply the 
right filter for the identified type of noise, but also helps to apply 
the filter only when noise is present, thereby preserving the image 
details. Improved denoising is achieved using simple filters, 
utilizing minimum hardware and power.  

Reconfiguration allows to pack both the filters in one region, 
further reducing the utilization of area and hardware resources. 
Thus, the proposed implementation exploits the advantages of 
both ASICs and general purpose processors, proving the 
suitability of reconfigurable computing in image processing 
applications. Given the advantages offered by reconfiguration, 
multiple functionalities of image processing can be included in 
the same pixel processor. Thus, very significant savings in area, 
power and increase in throughput can be achieved by adding more 
functionalities needed for image processing. 

Since operation performed by every pixel processor is 
independent, an SIMD processor as depicted in Fig.8 can be 
realized to exploit inherent data parallelism of image processing 
applications. Implemented Microblaze processor can handle the 
data flow and reconfiguration acting as control unit. Latency 
introduced by reconfiguration can be masked by implementing 
such a high throughput system. 
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