

ASIC Implementation of Address Generation Unit for Digital Signal Processing

Kernel-Processor

Ramesh Kini. M, Sumam David
Department of Electronics and Communication Engineering, National Institute of Technology Karnataka,

Surathkal, Mangalore, India – 575025.
rameshkinim@gmail.com, sumam@ieee.org

Abstract
Multimedia applications are written in high level lan-
guages and are implemented on Reconfigurable-
Processors (RP) through High Level Synthesis. Such
implementation style tends to use the same data-path
elements for both Address Generation and Kernel proc-
essing. This results in inconsistent and non-optimal use
of data-path elements. This paper discusses design and
implementation of dedicated Address Generation Unit
(AGU) capable of generating complex sequences of
addresses required by typical Multimedia Digital Signal
Processing (DSP) Kernels like Fast Fourier Transform
(FFT), Convolution, Linear Phase Finite-Impulse-
Response (FIR) Filters and Sum-of-Absolute-Difference
(SAD) computation for Motion Estimation (ME). Use of
such a dedicated AGU with the proposed Reconfigur-
able-Data-path separates the data-paths of address com-
putation and Kernel computation and paves way for effi-
cient high level synthesis. The AGU designed by us helps
to realize execution of one innermost loop of a DSP ker-
nel every clock with minimal hardware. A comprehen-
sive AGU (CAGU) that can be configured to generate
sequences of addresses of data stored in memory for the
computation of DSP kernels listed earlier has been im-
plemented as an ASIC using 0.18μ, 6 metal, single poly
technology from UMC.

Keywords: Address generation, Bit-reversed address,
Convolution, Digital Signal Processing Kernel, Dynami-
cally Reconfigurable Data-path, Fast Fourier Transform
(FFT), Finite Impulse Response (FIR) Filters, Motion
Estimation, Zig-zag address generation.

1. Introduction
Offline data processing or stream data processing of large
number of data points, as in the case of multimedia appli-
cations, requires data to be accessed from memory at
high rates. The sequence of this data access is non-linear,
complex and varies with the type of signal processing
kernel that is being executed. Observations made during
this research show that using kernel execution data-path
for address computation leads to ineffective utilization of
resources. Hence it is desirable to have a dedicated Com-

prehensive AGU (CAGU). This paper deals with the
design and implementation of such a CAGU as an Appli-
cation Specific Integrated Circuit (ASIC).
Study of topics like Reconfigurability, Synthesis, Place-
ment, Routing strategies, Configuration loading and
management etc. for reconfigurable devices and the re-
flection of the same on design of reconfigurable devices
is described in [1]. Algebraic operators basically have
regular structures; coarse grained architectures can pro-
vide configurable word length operators with area effi-
cient data-paths created with programmable interconnects
[2].
Concept of Reconfigurable Processor (RP) comes from
the idea of having a general purpose processor coupled
with some reconfigurable resources that allow execution
of custom application specific instructions. Dynamically
Reconfigurable Processor (DRP) achieves higher speed
of computation with lower cost of silicon area for compu-
tationally intensive applications in the domains like mul-
timedia.
Section 2 deals with design issues that highlight the need
for a CAGU and provides an overview of the setup in
which the designed CAGU can be used. Section 3 de-
scribes the algorithms and hardware developed for AGUs
supporting data/coefficient fetches and result updates. It
also discusses 3 main DSP kernel implementations
namely FFT, Convolution and SAD computation used in
motion estimation using the AGUs developed. Integra-
tion of various AGUs into CAGU, simulation results of
various kernels, ASIC implementation of the CAGU and
verification results are discussed in Section 4.

2. Overview of the proposed DRP
RPs find extensive applications in networking and mul-
timedia domains. Multimedia applications like Au-
dio/Video Encoders/Decoders, Trans-coders, FFT in
OFDM used in Software Defined Radios etc can exploit
the features of a RP to minimize the hardware require-
ments and at the same time improve the throughput.
The proposed processor has an array of four dynamically
Reconfigurable Functional Units (RFU) sharing a com-
mon memory. The array of RFUs and the memory are
controlled by an Application Specific Instruction set

ICGST-PDCS, Volume 11, Issue 1, December 2011

1

Processor (ASIP). The RFU array with a control proces-
sor can also be mapped onto a FPGA based embedded
system for multimedia applications.
The overall operation of the proposed processor can be
summarized as follows: Upon receiving a service request
for executing a kernel operation, the ASIP controller
facilitates the storage of data to be processed in appropri-
ate memory block, initializes a idle RFU with appropriate
control settings and schedules the kernel on that RFU.
Upon completion of kernel operation controller frees the
RFU for executing any other kernel. Basically ASIP
coordinates the job of kernel execution. Advantages of
the architecture are:
• The innermost loop of a kernel can be executed in

one clock and hence is faster compared to execution
on a GPP or DSP processor.

• Since the kernel itself is implemented as a micro-
program, there is no need for the code (program)
memory; no instruction fetches and decodes. This re-
sults in reduction of memory and power require-
ments.

• The application can be written in terms of function
calls and these function calls can be mapped to ker-
nels executed on the RFU by the ASIP. As a result
application program tends to be compact.

RFU contains a Dynamically Reconfigurable Data
Path (DRDP), 3 AGUs for generation of memory ad-
dresses and Configuration Memory with multiple con-
texts as shown in Figure 1. The DRDP consists of 2 Ad-
ders (Adder/Subtractor), 2 Multipliers, a Comparator,
Barrel Shifter and 4 Register files for temporary storage.
The DRDP under discussion supports signed integer and
fixed point arithmetic. The output of any of these func-
tional units can be routed to at least one input of all the
functional units. The DRDP unit will have three input
ports and an output port other than two memory read
ports and a memory write port. The configuration of a
data-path is defined by a control word that is stored in a
configuration memory. The DRDPs can be cascaded by
interconnecting the Inputs/Outputs (IO) appropriately to
form a complex data-path with kernel operations spread
over multiple DRDPs in a chained or pipelined fashion.
The processor design is targeted at acceleration of execu-
tion of these often used kernels under the control of the
ASIP.
Goal of executing the innermost loop of any of the se-
lected kernel in one clock with few finite arithmetic units
is satisfied if the address generation units are separated
from data-path of the kernel. This leads to use of dedi-
cated AGUs.
This is also supported by the observation made in [3] that
in case of application implementation through high level
synthesis, inclusion of AGU minimizes the circuit com-
plexity and helps achieving higher speeds of execution.
HDL code in structured style has been developed, tested
for each of the address update functions required by data
fetch, coefficient fetch and result-write operations of each
kernel, such that one address is generated per clock in the
required sequence. Common functional units used in the
address generation process for these kernels were identi-
fied; and a Comprehensive AGU that can support various
addressing modes with a shared data-path elements and
control structure was developed.

Though Coarse grain reconfigurable architectures pro-
vide significant speedups, ability to compile from im-
perative high level languages like ‘C’, Java®, Matlab® etc
to achieve noticeable speedup is not proved due to rea-
sons like reduced focus on compilation phase and map-
ping computational structures effectively on reconfigur-
able architectures [4]. Mapping of innermost loop to a
dynamically reconfigurable data-path coprocessor is
discussed in [5].

ASIP
Controller

Data Memory
Bank

Address
Generator

Unit 1 (AGU 1)

Address
Generator

Unit 2 (AGU 2)

Address
Generator

Unit 3 (AGU 3)

Data
Ports

 Dynamically
Reconfigurable

Data Path (DRDP)

Configuration
Memory with

Multiple Contexts

Interrupt

AG
U

,D
RD

P
in

iti
al

iz
at

io
n

Bu
s

16 1616

18

51

6

8

8

8

6

6

Figure 1. Block schematic of Reconfigurable Functional Unit.

System described in this paper can map a high-level DSP
kernel with recurring loop like N-point FFT, FIR filter
implementations and others onto the dynamically recon-
figurable data-path easily. The CAGU supports address
generation across multiple levels of recursive loops for
these kernels without changing the data-path.
To map a multimedia application to most of the recon-
figurable processors developed till now, a specialized
compiler or a high level synthesis tool is required. This
research targets at reducing the complexity of mapping
by designing a coarse grained architecture; such that the
proposed design aids in mapping the multimedia applica-
tions more effectively to the proposed architecture. The
multimedia applications can be written in any imperative
high level language using two kinds of function calls.
The first type being basic multimedia file header process-
ing and system IO handling, these are processed by the
controller processor. The second type of function calls
being the DSP kernels that can be mapped directly on to
the RFUs, can be executed in an accelerated fashion.
This eliminates the need for re-synthesis and special
efforts required in writing compilers/applications with
effective design space explored to suit the reconfigurable
hardware. The interaction between the Controller proces-
sor and the RFUs has been described earlier in this article.
A set of dedicated, efficient Address Generator Units
(AGU) will definitely enhance the performance. Next
section discusses the AGU in detail.

ICGST-PDCS, Volume 11, Issue 1, December 2011

2

3. CAGU for DRP for DSP Kernels
In signal processing applications, data access can be
characterized as indexed access of vectors stored in
memory. These indices are referred to as pointers in
higher level languages. These indices are data dependent
and the sequence of access depends on the kernel opera-
tion being performed on the data. Stride can be defined as
the distance between the addresses of consecutively ac-
cessed vectors in the memory. The strides could be linear
or non-linear; and can be characterized by an algebraic
equation. Thus the address of the next location to be
accessed can be expressed as an algebraic expression in
terms of the current address and can be viewed as an
addition of a modifier to the current address. Thus ad-
dress generation process can be seen as a sequence of
algebraic operations performed on current address and
this algebraic expression can be synthesized into an Ad-
dress Generation Unit using arithmetic operators and a
controller.
Extracting the Address Expression (AE), applying high
level optimizing methods like address expression split-
ting/clustering, induction variable analysis, target archi-
tecture selection and global-scope algebraic optimization
are explored in [6]; it also aims at reduction of cost of
time-multiplexed address unit at system level. This ap-
proach is more suited for high level synthesis of typical
multimedia applications.
In a signal processing ASIC, AGU caters to generation of
a pre-determined type of sequence of addresses. In case
of GPP, the AGU may support a few simple sequence
types or addressing modes. A Programmable Digital
Signal Processor (PDSP) will have dedicated AGUs that
support few additional addressing modes like bit-reversed,
circular etc. In PDSPs, AGUs have their own dedicated
computational logic and do not use the data-path re-
sources leading to concurrency of address generation and
data-path operations. If any other sequence of addresses
is required, then it needs to be generated by execution of
processor code and use data-path computational units,
resulting in non-optimal use of resources like data-path
elements and time.
Signal processing applications require varied types of
addressing modes. For a given application, each type of
data access may need a different type of addressing mode
and these depend on the architecture and data-path of the
processing system, the type of memory used and the way
the data is stored in the memory. For example FFT com-
putation needs the data to be fetched in bit-reversed order,
the twiddle-factors in a linear fashion and the result to be
written back in a bit-reversed order; FIR filter implemen-
tation of stored data requires the data to be fetched in a
linear fashion, but the same filter processing streaming
data needs to fetch the data from a circular buffer and
needs circular addressing mode.
Most of the signal processing applications can be written
in terms of DSP kernels and the kernels themselves could
be function calls. To achieve speedy execution, the exe-
cution of kernels may be offloaded to a hardware block
with a fixed or reconfigurable data-path under the control
of a supervisor processor. The job of the supervisor proc-
essor is to schedule the kernels on the hardware, initialize
the hardware with data pointers and other kernel control
variables. The interaction between the hardware and the

controller could be through interrupts, DMA and setting
of control words. Such hardware could be a coprocessor
or a reconfigurable data-path capable of executing vari-
ous kernels and having ability to switch between speci-
fied kernel operations by reconfiguring its data-path. The
reconfiguration of the data-path may be achieved by
simply changing the content of micro-program-counter to
the base address of the memory bank that holds the re-
quired micro-control-program. This hardware accelerator
unit may be capable of accessing the data from a virtual
memory for processing and result storing purposes. The
data-path may be pipelined and the memory being ac-
cessed could be multi-ported. High throughput demands
high memory bandwidth and puts very high constraints
on timing budget for address generation. Hence, it is
desirable to have multiple reconfigurable AGUs capable
of concurrent generation of various special address se-
quences required by variety of DSP kernels, with every
reconfigurable data-path. For example, there can be one
AGU each for data fetch, coefficient fetch and result
write operations. The reconfigurable AGU may have its
own local micro-program or a finite state machine for
generating sequences of addresses and may function
under the supervisory control of the micro-program for
that kernel.
Some of the most often used address sequences are Se-
quential, Sequential with offset, Shuffled, Bit-reversed,
Reflected etc. Hulina et al. [7] discuss implementation of
Coprocessor for generation of these address sequences
and provide the host processor with few additional spe-
cial addressing modes defined by signal processing algo-
rithms, without any change in the host processor's in-
struction set architecture or the external memory.
Melis et al. [8] describe the implementation of an AGU
that supports different types of circular addressing and
striped addressing modes. The AGU designed is con-
catenated with memory block and an Autonomous Mem-
ory Block (AMB) is created. AMB is a memory design
abstraction for structured data access. This AGU imple-
mented both as custom design and also on an FPGA, and
their performances are compared. They claim reduction
in routing resources and required area when implemented
on an FPGA.
Efficient generation of Address sequences like Zigzag for
entropy coding after DCT operation, sequence of ad-
dresses to fetch the twiddle-factors in FFT operation and
sequence of addresses to fetch the data in convolution
operation are essential for Multimedia Processing. Ad-
dress sequence generation for kernel operations on both
stored data and streaming data are also necessary.
This paper describes an Address Generation Unit suitable
for a Dynamically Reconfigurable Data-path Processor;
capable of generating one address per clock in required
sequence; and can be synchronized with the data-path
operations by using the Address-Generate- Enable signal.
The following address sequences suitable for DSP ker-
nels are supported:
• Data, twiddle-factor fetch and result write for FFT

kernel.
• Data, impulse response fetch and result write for

Convolution Kernel - for both stored and streaming
data.

ICGST-PDCS, Volume 11, Issue 1, December 2011

3

• Data, coefficient fetch and result write for Linear
Phase FIR filter – for streaming data input.

• Data fetch from macro-blocks for Motion Estimation
kernel.

• Zigzag - suitable for fetching data for entropy coding.
• Other modes like increment and decrement etc.

Hardware for each of these addressing modes was de-
veloped separately and later a Comprehensive Address
Generator Unit (CAGU) that can generate all the address
sequences listed above was designed. The AGU devel-
oped is tailored to work with a DRDP, though the con-
cept can be used with any data-path unit with appropriate
synchronization. As an example of application of this
CAGU, consider an array of reconfigurable processor
data-paths that support execution of Single Kernel Multi-
ple Data (SKMD) implying concurrent fetch of data from
multiple databanks/data-streams for executing the same
kernel operation on these data. The proposed CAGU can
be used in such applications as well.
A set of CAGUs pertaining to access of data for a spe-
cific kernel can be configured by selecting suitable ad-
dressing modes and may be used to generate address
sequences required by multiple data-paths.
AGU and DRDP are designed as parameterized word
length and address size using a Hardware Description
Language in fully Structural style of coding. Thus the
hardware synthesized will be identical to the description
in the code. AGU and the DRDP provide necessary status
signals back to the controller and are controllable by a
micro-programmed controller. Hence reconfigurability is
possible with just change of the micro-program.
[9] reports AGUs developed for data access and twiddle-
factor fetch suitable for a complete N point FFT kernel,
implementation of N point FFT kernel using Dynamically
Reconfigurable Data Path (DRDP), AGUs for data, im-
pulse response access for a complete Convolution kernel
with implementation of kernel and AGU for accessing
data from N x N pixel array in a Zigzag order used in
entropy coding after DCT.

3.1. Address Generation for N point FFT Kernel
Jacobson et al. [10] discuss an implementation of dedi-
cated address generator unit that supports reconfigurable
radix-4 FFT processor. It uses two counters namely
group counter and butterfly counter. The primary ad-
dress is decomposed into group and butterfly counters.
The addresses rotate in groups of 4 after first stage.
FFT kernel can be executed in a single DRDP in a folded
manner or can be executed in four DRDPs in a chained
manner. A typical data-path that implements a single
Butterfly operation in Decimation-In-Frequency (DIF) is
given in [9] and on the same lines data-path for Decima-
tion-In-Time (DIT) scheme is also implemented.
In each of these data-paths 4 DRDP units have been
cascaded and configured to form a single data-path capa-
ble of performing one butterfly operation for every two
clocks so that N point FFT operation is completed in
Nlog2(N)+4 clock cycles where a constant of 4 clock
cycles corresponds to initialization of the DRDP and
write back of the last butterfly result. The setup assumes
that the twiddle-factors are pre-computed and saved in
memory.

3.1.1. Bit Reversed Address Generation for N point FFT:
Many algorithms to compute bit-reversed address are
available in literature. Many of them are best suited for
coding using high level languages on microprocessor or
digital signal processor [11, 12 and 13]. These algorithms
can be classified as those based on heuristic [11] and
algorithms using Seed-Table [13]. Address generation
using these methods have a long delay as compared to the
data-path latency and the memory access delay.
Hardware Address Generation Units (AGUs) have also
been developed for array processors [14]. Nwachukwu
[14], Hulina [7] implemented the Bit-Reversed address
generation using Counter-Multiplexer method. Counter-
Multiplexer method can generate variety of patterns, but
as the number of addresses increase, area increases expo-
nentially and also results in increase in power dissipation
and leakage.
The methods proposed in [9] can generate sequence of
addresses suitable for many of multimedia algorithms.
They use adders, shifters, counters in the data-path and
very few gates for the simple control logic. This trans-
lates to a linear increase in transistor count with increase
in the number of address bits unlike counter-multiplexer
method. Banerjee et al. [15] describe an algorithm for
address generation for data access for N point FFT. The
hardware developed for implementing the algorithm uses
3 loadable down counters and allied control circuit.
Hardware developed by [9] for the same functionality
needs only 2 shift registers and allied control circuit as
depicted in Figure 2. The shifters hold data patterns like
“11..1100..00” and “00..00100..00” and are shifted once
after completion of each stage of FFT and only 2 bits
toggle in each of the shifters as compared to multiple bits
toggling in each of the counters after every address gen-
eration as in Banerjee et al. [15].

Shift Right
Arithmetic

Shift Right
Logical

Shift
Control Logic

Correction
Generate Logic

Bf_Br_Add_Sub

Offset_Addr_Reg
Offset

Correction

Mask N/2

Figure 2. Hardware schematic of Bit Reversed AGU

The input or the output samples need to be re-ordered in
bit-reversed fashion depending on whether DIT or DIF
approach is employed. This reordering is done by ex-
changing data in memory locations pointed by pairs of
address generated by bit-reversed address generator. For
the actual exchange the data elements of the pair are
fetched from memory, stored in registers of the DRDP
and written back in exchanged order from registers. For
fetching the data and writing it back we use two AGUs
appropriately synchronized.

ICGST-PDCS, Volume 11, Issue 1, December 2011

4

3.1.2. Address Generation for accessing Twiddle-factors
for N point FFT:
For a FFT butterfly operation, a pair of data operands i.e.,
one fetched from bit-reverse ordered address and the
other being the twiddle-factor are needed. An algorithm
for generating sequence of addresses for fetching twid-
dle-factors for any N point FFT with log2N stages has
been developed, hardware designed, simulated, tested
and the block schematic is as shown in Figure 3.
 3.2. Address Generators for Convolution Kernel
Convolution approach is used in implementing Digital
Filters like Finite Impulse Response (FIR) filter. Linear
Phase FIR filters are typically used where filter coeffi-
cients are symmetric or anti-symmetric. When an input
sequence of length N is convolved with an impulse re-
sponse of length M, the output sequence is of length
N+M-1. The address generation scheme developed as-
sumes that the given data is padded with M-1 zeroes at
both ends. The sample points of impulse response are
stored in a reverse order in the memory.
The sequence of addresses for fetching coefficients fol-
lows a Modulo M pattern and that for writing the convo-
lution result Divide by M. The Convolution kernel with N
data points and M impulse response points is executed in
((N+M-1) x N + 3) clock cycles where the 3 clock cycles
correspond to initialization and write latency of last result.

Shift Right
Logical

NN Counter
(up counter)

Correction, counter load and shift
control Generation Logic

Bf_Br_Add_Sub

Offset_Addr_Reg

Offset

Correction

N/2 Counter
(up counter)

"00...01" "00...01" N/2

NN
N/4

Figure 3. Block schematic of AGU for FFT Twiddle-Factor fetches

CLK Counter

Comparator

Bf_Br_Add_Sub

00..00
LdUp

Reset
M-1

Correction

1 M-2

Bf_Br_bar

Add_bar_Sub

Addr_Gen_En

CLK

Offset_Addr_Reg

Reset

10

1

CLK

Ld

Reset

Reset

1

Figure 4. Hardware schematic of AGU for Data fetch of Convolution
kernel - stored data

Reset

+Subtractor

Correction

&

Offset

N-1

N 1

Comparator

N

0

A B

A >= B

Counter1 CLK

Comparator

Bf_Br_Add_Sub

LdUp

Reset

1 Bf_Br_bar

Add_bar_Sub

Addr_Gen_En

CLK

Offset_Addr_Reg
Reset

1

CLK

Ld

CLK Counter2
LdUp

Reset

Comparator
N

0

1

Reset

1

N

00...00 00...00

Figure 5. Hardware schematic AGU for data fetch for Convolution
kernel - streaming data

3.2.1 Address Generator for fetching data for convolution
- stored data and streaming data:
The convolution operation may be performed on stored
data or streaming data. Each of these operations needs a
different type of AGU. AGU suitable for both applica-
tions have been developed. The algorithm for fetching
the coefficients will remain the same irrespective of
whether the kernel is working on stored or streaming data.
The AGU used for storing the convolved data will use
linear or circular addressing mode depending on whether
the kernel is working on stored or streaming input.
The hardware schematic of AGU for data fetch in case of
stored data is shown in Figure 4. In case of streaming
data, the data samples are stored in a circular buffer.
Schematic of the AGU hardware is as shown in Figure 5
and the algorithm for generating the address for fetching
streaming data can be summarized as shown in Figure 6.

Reset: Reset Counter1, Counter2, Offset;
Begin: If (Counter1==N-1) {
 Then Counter1=0, Counter2=Counter2 + 1;
 Else Counter1=Counter1 + 1;}
 If (Counter2==N)Then Counter2=0;
 If ((Counter1+Counter2) < N) {
 Then Correction=0;
 Else Correction=N;}
 Offset=(Counter1+Counter2)-Correction;
 Go to Begin;

Figure 6. Algorithm of AGU for data fetching for Convolution kernel -
streaming data

3.2.2. Address Generator for accessing impulse response
samples in convolution:
The algorithm for generating the addresses for fetching
impulse response is of Modulo N type and is similar to
that of data fetch for convolution for stored data except
for the correction ‘-(N-1)’ whenever the counter reaches a
value of N-1; and is as shown in Figure 7.

ICGST-PDCS, Volume 11, Issue 1, December 2011

5

3.2.3. Address Generator for accessing convolved data
write-back:
The algorithm for generating the addresses for result
storage is of Divide by N type and is similar to that of
coefficient fetch for convolution except the correction is
‘0’ when the counter value is less than N-1 and correction
is ‘1’ when counter value is equal to N-1; and is as shown
in Figure 8.

CLK N_Counter

Comparator
Eq

Bf_Br_Add_Sub

00..00
LdUp

Reset

'N-1'

Correction

'1' 'N-1'

Bf_Br_bar

Add_bar_Sub

Addr_Gen_En

CLK

Offset_Addr_Reg

Reset

10

'1'

CLK

Ld

Reset

Reset

'1'

Figure 7. Hardware schematic of AGU for impulse response samples
of Convolution kernel

CLK N_Counter

Comparator
Eq

Bf_Br_Add_Sub

00..00
LdUp

Reset
'N-1'

Correction

"0" "1"

Bf_Br_bar

Add_bar_Sub

Addr_Gen_En

CLK

Offset_Addr_Reg

Reset

10

'1'

CLK

Ld

Reset

Reset

'1'

'0'

Figure 8. Hardware schematic of AGU for result storage of Convolu-
tion kernel

 3.3. Address Generator for accessing streaming data for
a Linear Phase FIR Kernel
Consider a case of Linear phase FIR filter with even
number of coefficients h(n) and they are symmetric. For
example: let N=4; then h(0)=h(3) and h(1)=h(2). Hence
y(n) can be written as
 y(n) = [x(n)+x(n-3)]h(0) + [x(n-1)+x(n-2)]h(1)
A novel algorithm for generating appropriate sequence of
addresses to fetch the data has been developed, hardware
implemented and tested. The schematic of the hardware

is shown in Figure 9 and the corresponding algorithm can
be summarized as shown in Figure 10. The address gen-
eration scheme for fetching filter-coefficients and storing
the results are similar to that of convolution kernel with
streaming data.

3.4. AGU for data fetch for Motion Estimation using
Block Matching Technique Kernel
Between adjacent frames of video there will be little
movement of objects including the background. An ob-
ject in the previous frame tends to get displaced/rotated
in the next frame by a small amount. Practically there
may not be much of a difference between the frames.

MSB

LSB

N/2 1

+

N/2 1

Comparator

N/2
A B

A >= B
+

Comparator
A B

A >= B

&

Offset

0

Bf_Br_Add_Sub

1 Bf_Br_bar

Add_bar_Sub

Addr_Gen_En

CLK

Offset_Addr_Reg
Reset

1

CLK

Ld

0

1

Reset

N

N

N

CLK Counter

Comparator

00..00
LdUp

Reset

1

10

1 0

1

+

0
10

N

+

10

Eq

N-1

Reset

Figure 9. Hardware schematic of AGU for Data fetch for Linear Phase

FIR Kernel - streaming data
Frames may contain multiple slices and the slices can be
divided into smaller blocks called Macro-Blocks (MB). If
a macro-block in the given slice in current frame is com-
pared with the corresponding macro-block or in the
neighborhood of the corresponding macro-block in the
prior frame, the difference will normally be very small.
The search area for macro-block match is restricted to
search parameter p pixels around the macro block in a
slice in the previous frame. Goal of Motion Estimation
(ME) is to search for such a block for which the cost
function is the least, within a prescribed limit and com-
puting the displacement of the block from the previous to
the current frame. This operation needs to be done for all
blocks in the frame and is a computationally expensive
operation; motion detection over longer distance needs
larger value of search parameter and results in exponen-
tial increase of computational complexity. Popular cost
functions are Sum of Absolute Difference (SAD), Mean
Absolute Difference (MAD) and Mean Square Error

ICGST-PDCS, Volume 11, Issue 1, December 2011

6

(MSE). MSE as a cost function is computationally more
intensive compared to MAD.

Reset: Reset Counter, Offset;
Begin: If (Counter==N-1) {
 Then Counter=0;
 Else Counter=Counter+1;}

S=(N-1)-Counter;
 If Counter0 {
 Then t=|(Current_Offset-S)|N

Else (Current_Offset+S);}
 If Current_Offset >= N/2 {
 Then u=Current_Offset-(N/2-1);
 Else u=Current_Offset+(N/2+1);}
 If Counter==N-1 {
 Then v=u; Else v=t;}

Next_Offset=|v|N;
 Go to Begin;

Figure 10. Algorithm of AGU for fetching data for Linear Phase FIR
kernel - streaming data

Reset

-

Correction

&

1

X_Counter CLK

Comparator

Bf_Br_Add_Sub

LdUp

Reset

1 Bf_Br_bar

Add_bar_Sub

Addr_Gen_En

CLK

Offset_Addr_Reg
Reset

1

CLK

Ld

CLK Y_Counter
LdUp

Reset

Comparator

mb_ht

0

0

Reset

1 0
00..00 00..00

Reset

mb_wd

&

mb_wdsl_wd

Done

Figure 11. Hardware schematic of AGU for data fetch for Motion
Estimation kernel

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

Figure 12. Sequence of address generated in zigzag addressing mode

The AGU assumes that the data of the current and the
reference slices are kept in the memory as rows; the
width, height of the macro-block (mb_wd, mb_ht) and
the width of slice (sl_wd) are given. The AGU uses 2 up-
counters to maintain the row and column counts. Block

schematic of the hardware implementation is as shown in
Figure 11.

3.5. Zigzag Address Generation for accessing N x N pixel
array
JPEG uses Entropy coding for compressing the data after
performing DCT and Quantization. After computing the
2D-DCT of an N x N image, it can be seen that the signif-
icant coefficients are present in top-left corner of 2D
matrix. For compressing the coefficients further, it is
necessary to process only these coefficients.
Entropy coding requires the quantized data of N x N pixel
array to be read in zigzag fashion as shown by the se-
quence of arrows in Figure 12. An algorithm has been
developed to generate this address sequence for any even
value of N x N, hardware has been developed, simulated,
and tested. The block schematic is as shown in Figure 13.
Cond1 to Cond7 are conditions that check if the counter
value pair has reached the boundary of the pixel array
map and hence a change of direction in scanning is re-
quired.

Column Counter
Up

Down

Control Logic

Correction
Generate Logic

Adder/Subtractor

Offset_Addr_Reg

cond1 cond2
N

Correction

Add_bar_Sub

Offset

co
nd

3

co
nd

5
co

nd
4

co
nd

6
co

nd
7 Column Counter

Up

Down

Figure 13. Hardware schematic for Zigzag address generation

4. Results and Conclusions
Efficient Address Generation Algorithms and hardware
suitable for speeding up execution of DSP kernels using
DRDPs have been developed and tested. The tests prove
the efficacy of the AGUs developed, the ability to syn-
chronize the data access and computation of result using
the DRDPs as demonstrated in cases of a 8 point DIF
FFT kernel, Convolution kernel and SAD computation in
Motion Estimation kernel. Timing details of the various
kernel executions are shown in Table 1.
More simulation results of these DSP kernel execution
using the CAGU and the DRDP are published in our
earlier papers [9, 16].
The algorithms have been implemented in VHDL in a
fully structured coding style. The data width and the
address width are parametered. The coding completely
adheres to structural style and the algorithm is using
components that scale linearly in terms of complexity of
number of transistors in the hardware. All the algorithms
have been simulated and tested.

ICGST-PDCS, Volume 11, Issue 1, December 2011

7

Figure 14. Snapshot of the simulation result of FFT kernel

Figure 15. Snapshot of the simulation result of convolution kernel

Structured approach of the coding helps in identifying
common components like counters, shifters, adder and
comparators etc used in implementing various address-
ing modes. A Comprehensive Address Generator Unit
(CAGU) that can support 11 addressing modes listed
earlier has been designed using Up/Down Counters
cum Logical/Arithmetic Right Shifters, an Accumula-
tor, Comparators and little glue logic. The CAGU has
been tested. The simulation results of FFT kernel and
convolution kernel are shown in Figure 14 and Figure
15 respectively.

 Table 1. Timing details of various kernel executions
Kernel Number of

clocks
Overhead
(initialization
and latency)

FFT (N point) N log2N 4
Convolution (N+M-1)N 3
ME: SAD (N x M) N x M 2

4.1. ASIC Implementation of the CAGU
The CAGU was synthesized, placed and routed. The
post synthesis report is summarized in Table 2. The
snapshot of the layout is shown in Figure 14.

Table 2. Synthesis report of CAGU for various address widths
Criteria/Address width
(clk period)

8 bit
(6ns)

16 bit
(8ns)

24 bit
(10ns)

Cells used 1016 1975 2948
Area in µ2 21802 43019 64202
Leakage power in nW 39.46 77.84 117.46
Dynamic power in mW 2.95 5.43 8.65

The functional verification was carried out on the ex-
tracted net-list and the CAGU is functioning as desired.
The design uses Faraday standard cell library based on
UMC 0.18µ technology and has been fabricated with
Europractice. The chip is currently being tested. The
entire implementation process was carried out using
Cadence Tool suite; functional simulation and post

ICGST-PDCS, Volume 11, Issue 1, December 2011

8

extraction behavioral simulation were carried out with
ModelSim tool. Tools and fabrication were supported
by Special Manpower Development Program of DIT,
Government of India.
The concept proposed demonstrates the utility of dedi-
cated AGUs and proves the following: (i) Computation
of one address per clock per AGU, (ii) Comprehensive
AGU can be configured to generate address sequence
over the entire DSP kernel without any intervention of
any kind during the execution of the kernel, (iii) With
the help of these AGUs and suitable reconfigurable
data-path the innermost loop of the chosen DSP kernel
can be executed in one clock period and (iv) Circuit
complexity and power consumption of the circuit in-
creases linearly with increasing address width.

Figure 16. Snapshot of the layout of a 8 bit wide CAGU

5. References
[1] S. Hauck and A. DeHon, Reconfigurable Compu-

ting - The Theory and Practice of FPGA Based
Computation, Morgan Kauffmann Publishers,
2008.

[2] R. Hartenstein, “Coarse grain reconfigurable
architecture (embedded tutorial),” ASP-DAC '01:
Proceedings of the 2001 Asia and South Pacific
Design Automation Conference, Yokohama, Ja-
pan, New York, NY, USA: ACM, 2001, pp. 564-
570.

[3] R. Lysecky, G. Stitt, and F. Vahid, “Warp pro-
cessors,” ACM Transactions on Design Automa-
tion of Electronic Systems (TODAES), vol. 11,
2006, pp. 659-681.

[4] J.M.P. Cardoso, “Self Loop Pipelining and Re-
configurable Dataflow Arrays,” Workshop on
Systems, Architectures, Modeling, and Simula-
tion (SAMOS IV), Samos, Springer Verlag, 2005,
pp. 234-243.

[5] Z. Huang, and S. Malik, “Exploiting operation
level parallelism through dynamically reconfi-
gurable data-paths,” DAC’02 Proceedings of the
39th annual Design Automation Conference,
New Orleans, Louisiana, USA, NewYork, NY,
USA: ACM, 2002, pp. 337-342.

[6] M.A. Miranda, F.V.M. Catthoor, M. Janssen, and
H.J. De Man, “High-level address optimization
and synthesis techniques for data-transfer-
intensive applications,” IEEE Trans. Very Large
Scale Integr. Syst., vol. 6(4), 1998, pp. 677-686.

[7] P. Hulina, L. Coraor, L. Kurian, and E. John, E,
“Design and VLSI implementation of an address
generation coprocessor,” Computers and Digital
Techniques, IEE Proceedings, Vol.142(2), 1995,
pp. 145-151.

[8] W.J.C.Melis, P.Y.K.Cheung, W. Luk, “Scalable
structured data access by combining autonomous
memory blocks,” IEEE International Conference
on Field-Programmable Technology, 2004,
pp.457-460.

[9] Ramesh M. Kini, and S. David, “Comprehensive
address generator for digital Signal Processing,”
International Conference on Industrial and Infor-
mation Systems (ICIIS), Dec.2009, pp. 325-330.

[10] A.T.Jcobson, D.N.Truong, and B.M.Baas, “The
design of a reconfigurable continuous-flow
mixed-radix {FFT} processor,” IEEE Interna-
tional Symposium on Circuits and Systems, 2009.
ISCAS 2009, pp.1133-1136.

[11] A. Yong, “A better FFT bit-reversal algorithm
without tables,” IEEE Transactions on Signal
Processing, vol. 39(10), 1991, pp. 2365-2367.

[12] D. Evans, “A second improved digit-reversal
permutation algorithm for fast transforms,” IEEE
Transactions on Acoustics, Speech and Signal
Processing, 1989, vol.37(8), pp. 1288-1291.

[13] J. Walker, “A new bit reversal algorithm,” IEEE
Transactions on Acoustics, Speech and Signal
Processing, vol.38(8), 1990, pp. 1472-1473.

[14] E. Nwachukwu, “Address Generation in an Array
Processor,” IEEE Transactions on Computers,
vol.C-34(2), 1985, pp. 170-173.

[15] A. Banerjee, A.S. Dhar, and S. Banerjee, “FPGA
realization of a CORDIC based FFT processor for
biomedical signal processing,” Microprocessors
and Microsystems, vol.25(3), 2001, pp. 131-142.

[16] Ramesh M. Kini and S. David, “Address Genra-
tion for DSP Kernels,” International Conference
on Communications and Signal Processing
(ICCSP), 2011, pp.112-116.

Biographies:

Ramesh Kini. M, obtained his B E
degree from Mysore University, in
1984. He obtained his M Tech Degree
from Mangalore University in 1997.
Currently he is an Associate Professor
at National Institute of Technology
Karnataka, Surathkal, INDIA.

Email: rameshkinim@gmail.com

Prof. Sumam David obtained her
BTech degree from University of Ke-
rala in 1985, and the MTech and PhD
degree from Department of Electrical
Engineering, Indian Institute of Tech-
nology, Madras, India in 1986 and

1992 respectively. Currently she is a Professor of Elec-
tronics and Communication at National Institute of
Technology Karnataka, Surathkal, INDIA.
Email: sumam@ieee.org

ICGST-PDCS, Volume 11, Issue 1, December 2011

9

	ASIC Implementation of Address Generation Unit for Digital Signal ProcessingKernel-Processor
	Abstract
	Keywords
	1. Introduction
	2. Overview of the proposed DRP
	3. CAGU for DRP for DSP Kernels
	4. Results and Conclusions
	5. References
	Biographies

