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Abstract  
Multimedia applications are written in high level lan-
guages and are implemented on Reconfigurable-
Processors (RP) through High Level Synthesis. Such 
implementation style tends to use the same data-path 
elements for both Address Generation and Kernel proc-
essing.  This results in inconsistent and non-optimal use 
of data-path elements. This paper discusses design and 
implementation of dedicated Address Generation Unit 
(AGU) capable of generating complex sequences of 
addresses required by typical Multimedia Digital Signal 
Processing (DSP) Kernels like Fast Fourier Transform 
(FFT), Convolution, Linear Phase Finite-Impulse-
Response (FIR) Filters and Sum-of-Absolute-Difference 
(SAD) computation for Motion Estimation (ME). Use of 
such a dedicated AGU with the proposed Reconfigur-
able-Data-path separates the data-paths of address com-
putation and Kernel computation and paves way for effi-
cient high level synthesis. The AGU designed by us helps 
to realize execution of one innermost loop of a DSP ker-
nel every clock with minimal hardware. A comprehen-
sive AGU (CAGU) that can be configured to generate 
sequences of addresses of data stored in memory for the 
computation of DSP kernels listed earlier has been im-
plemented as an ASIC using 0.18μ, 6 metal, single poly 
technology from UMC. 
 
Keywords: Address generation, Bit-reversed address, 
Convolution, Digital Signal Processing Kernel, Dynami-
cally Reconfigurable Data-path, Fast Fourier Transform 
(FFT), Finite Impulse Response (FIR) Filters, Motion 
Estimation, Zig-zag address generation.  
 
1. Introduction 
Offline data processing or stream data processing of large 
number of data points, as in the case of multimedia appli-
cations, requires data to be accessed from memory at 
high rates.  The sequence of this data access is non-linear, 
complex and varies with the type of signal processing 
kernel that is being executed.  Observations made during 
this research show that using kernel execution data-path 
for address computation leads to ineffective utilization of 
resources. Hence it is desirable to have a dedicated Com-

prehensive AGU (CAGU).  This paper deals with the 
design and implementation of such a CAGU as an Appli-
cation Specific Integrated Circuit (ASIC). 
Study of topics like Reconfigurability, Synthesis, Place-
ment, Routing strategies, Configuration loading and 
management etc. for reconfigurable devices and the re-
flection of the same on design of reconfigurable devices 
is described in [1]. Algebraic operators basically have 
regular structures; coarse grained architectures can pro-
vide configurable word length operators with area effi-
cient data-paths created with programmable interconnects 
[2]. 
Concept of Reconfigurable Processor (RP) comes from 
the idea of having a general purpose processor coupled 
with some reconfigurable resources that allow execution 
of custom application specific instructions.  Dynamically 
Reconfigurable Processor (DRP) achieves higher speed 
of computation with lower cost of silicon area for compu-
tationally intensive applications in the domains like mul-
timedia.  
Section 2 deals with design issues that highlight the need 
for a CAGU and provides an overview of the setup in 
which the designed CAGU can be used.  Section 3 de-
scribes the algorithms and hardware developed for AGUs 
supporting data/coefficient fetches and result updates.  It 
also discusses 3 main DSP kernel implementations 
namely FFT, Convolution and SAD computation used in 
motion estimation using the AGUs developed.  Integra-
tion of various AGUs into CAGU, simulation results of 
various kernels, ASIC implementation of the CAGU and 
verification results are discussed in Section 4. 

 
2. Overview of the proposed DRP  
RPs find extensive applications in networking and mul-
timedia domains. Multimedia applications like Au-
dio/Video Encoders/Decoders, Trans-coders, FFT in 
OFDM used in Software Defined Radios etc can exploit 
the features of a RP to minimize the hardware require-
ments and at the same time improve the throughput.  
The proposed processor has an array of four dynamically 
Reconfigurable Functional Units (RFU) sharing a com-
mon memory. The array of RFUs and the memory are 
controlled by an Application Specific Instruction set 
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Processor (ASIP).  The RFU array with a control proces-
sor can also be mapped onto a FPGA based embedded 
system for multimedia applications.  
The overall operation of the proposed processor can be 
summarized as follows: Upon receiving a service request 
for executing a kernel operation, the ASIP controller 
facilitates the storage of data to be processed in appropri-
ate memory block, initializes a idle RFU with appropriate 
control settings and schedules the kernel on that RFU. 
Upon completion of kernel operation controller frees the 
RFU for executing any other kernel. Basically ASIP 
coordinates the job of kernel execution. Advantages of 
the architecture are: 
• The innermost loop of a kernel can be executed in 

one clock and hence is faster compared to execution 
on a GPP or DSP processor. 

• Since the kernel itself is implemented as a micro-
program, there is no need for the code (program) 
memory; no instruction fetches and decodes. This re-
sults in reduction of memory and power require-
ments. 

• The application can be written in terms of function 
calls and these function calls can be mapped to ker-
nels executed on the RFU by the ASIP.  As a result 
application program tends to be compact. 

RFU contains a Dynamically Reconfigurable Data 
Path (DRDP), 3 AGUs for generation of memory ad-
dresses and Configuration Memory with multiple con-
texts as shown in Figure 1. The DRDP consists of 2 Ad-
ders (Adder/Subtractor), 2 Multipliers, a Comparator, 
Barrel Shifter and 4 Register files for temporary storage. 
The DRDP under discussion supports signed integer and 
fixed point arithmetic.  The output of any of these func-
tional units can be routed to at least one input of all the 
functional units. The DRDP unit will have three input 
ports and an output port other than two memory read 
ports and a memory write port.  The configuration of a 
data-path is defined by a control word that is stored in a 
configuration memory. The DRDPs can be cascaded by 
interconnecting the Inputs/Outputs (IO) appropriately to 
form a complex data-path with kernel operations spread 
over multiple DRDPs in a chained or pipelined fashion. 
The processor design is targeted at acceleration of execu-
tion of these often used kernels under the control of the 
ASIP.  
Goal of executing the innermost loop of any of the se-
lected kernel in one clock with few finite arithmetic units 
is satisfied if the address generation units are separated 
from data-path of the kernel. This leads to use of dedi-
cated AGUs. 
This is also supported by the observation made in [3] that 
in case of application implementation through high level 
synthesis, inclusion of AGU minimizes the circuit com-
plexity and helps achieving higher speeds of execution.  
HDL code in structured style has been developed, tested 
for each of the address update functions required by data 
fetch, coefficient fetch and result-write operations of each 
kernel, such that one address is generated per clock in the 
required sequence. Common functional units used in the 
address generation process for these kernels were identi-
fied; and a Comprehensive AGU that can support various 
addressing modes with a shared data-path elements and 
control structure was developed.  

Though Coarse grain reconfigurable architectures pro-
vide significant speedups, ability to compile from im-
perative high level languages like ‘C’, Java®, Matlab® etc 
to achieve noticeable speedup is not proved due to rea-
sons like reduced focus on compilation phase and map-
ping computational structures effectively on reconfigur-
able architectures [4]. Mapping of innermost loop to a 
dynamically reconfigurable data-path coprocessor is 
discussed in [5].  
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Figure 1.  Block schematic of Reconfigurable Functional Unit. 

 
System described in this paper can map a high-level DSP 
kernel with recurring loop like N-point FFT, FIR filter 
implementations and others onto the dynamically recon-
figurable data-path easily.  The CAGU supports address 
generation across multiple levels of recursive loops for 
these kernels without changing the data-path. 
To map a multimedia application to most of the recon-
figurable processors developed till now, a specialized 
compiler or a high level synthesis tool is required. This 
research targets at reducing the complexity of mapping 
by designing a coarse grained architecture; such that the 
proposed design aids in mapping the multimedia applica-
tions more effectively to the proposed architecture. The 
multimedia applications can be written in any imperative 
high level language using two kinds of function calls.  
The first type being basic multimedia file header process-
ing and system IO handling, these are processed by the 
controller processor. The second type of function calls 
being the DSP kernels that can be mapped directly on to 
the RFUs, can be executed in an accelerated fashion.  
This eliminates the need for re-synthesis and special 
efforts required in writing compilers/applications with 
effective design space explored to suit the reconfigurable 
hardware. The interaction between the Controller proces-
sor and the RFUs has been described earlier in this article. 
A set of dedicated, efficient Address Generator Units 
(AGU) will definitely enhance the performance.  Next 
section discusses the AGU in detail. 
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3. CAGU for DRP for DSP Kernels  
In signal processing applications, data access can be 
characterized as indexed access of vectors stored in 
memory. These indices are referred to as pointers in 
higher level languages.  These indices are data dependent 
and the sequence of access depends on the kernel opera-
tion being performed on the data. Stride can be defined as 
the distance between the addresses of consecutively ac-
cessed vectors in the memory. The strides could be linear 
or non-linear; and can be characterized by an algebraic 
equation. Thus the address of the next location to be 
accessed can be expressed as an algebraic expression in 
terms of the current address and can be viewed as an 
addition of a modifier to the current address. Thus ad-
dress generation process can be seen as a sequence of 
algebraic operations performed on current address and 
this algebraic expression can be synthesized into an Ad-
dress Generation Unit using arithmetic operators and a 
controller. 
Extracting the Address Expression (AE), applying high 
level optimizing methods like address expression split-
ting/clustering, induction variable analysis, target archi-
tecture selection and global-scope algebraic optimization 
are explored in [6]; it also aims at reduction of cost of 
time-multiplexed address unit at system level.  This ap-
proach is more suited for high level synthesis of typical 
multimedia applications. 
In a signal processing ASIC, AGU caters to generation of 
a pre-determined type of sequence of addresses. In case 
of GPP, the AGU may support a few simple sequence 
types or addressing modes. A Programmable Digital 
Signal Processor (PDSP) will have dedicated AGUs that 
support few additional addressing modes like bit-reversed, 
circular etc. In PDSPs, AGUs have their own dedicated 
computational logic and do not use the data-path re-
sources leading to concurrency of address generation and 
data-path operations. If any other sequence of addresses 
is required, then it needs to be generated by execution of 
processor code and use data-path computational units, 
resulting in non-optimal use of resources like data-path 
elements and time.    
Signal processing applications require varied types of 
addressing modes.  For a given application, each type of 
data access may need a different type of addressing mode 
and these depend on the architecture and data-path of the 
processing system, the type of memory used and the way 
the data is stored in the memory. For example FFT com-
putation needs the data to be fetched in bit-reversed order, 
the twiddle-factors in a linear fashion and the result to be 
written back in a bit-reversed order; FIR filter implemen-
tation of stored data requires the data to be fetched in a 
linear fashion, but the same filter processing streaming 
data needs to fetch the data from a circular buffer and 
needs circular addressing mode.  
Most of the signal processing applications can be written 
in terms of DSP kernels and the kernels themselves could 
be function calls. To achieve speedy execution, the exe-
cution of kernels may be offloaded to a hardware block 
with a fixed or reconfigurable data-path under the control 
of a supervisor processor. The job of the supervisor proc-
essor is to schedule the kernels on the hardware, initialize 
the hardware with data pointers and other kernel control 
variables. The interaction between the hardware and the 

controller could be through interrupts, DMA and setting 
of control words. Such hardware could be a coprocessor 
or a reconfigurable data-path capable of executing vari-
ous kernels and having ability to switch between speci-
fied kernel operations by reconfiguring its data-path.  The 
reconfiguration of the data-path may be achieved by 
simply changing the content of micro-program-counter to 
the base address of the memory bank that holds the re-
quired micro-control-program. This hardware accelerator 
unit may be capable of accessing the data from a virtual 
memory for processing and result storing purposes. The 
data-path may be pipelined and the memory being ac-
cessed could be multi-ported. High throughput demands 
high memory bandwidth and puts very high constraints 
on timing budget for address generation. Hence, it is 
desirable to have multiple reconfigurable AGUs capable 
of concurrent generation of various special address se-
quences required by variety of DSP kernels, with every 
reconfigurable data-path. For example, there can be one 
AGU each for data fetch, coefficient fetch and result 
write operations. The reconfigurable AGU may have its 
own local micro-program or a finite state machine for 
generating sequences of addresses and may function 
under the supervisory control of the micro-program for 
that kernel. 
Some of the most often used address sequences are Se-
quential, Sequential with offset, Shuffled, Bit-reversed, 
Reflected etc. Hulina et al. [7] discuss implementation of 
Coprocessor for generation of these address sequences 
and provide the host processor with few additional spe-
cial addressing modes defined by signal processing algo-
rithms, without any change in the host processor's in-
struction set architecture or the external memory. 
Melis et al. [8] describe the implementation of an AGU 
that supports different types of circular addressing and 
striped addressing modes.  The AGU designed is con-
catenated with memory block and an Autonomous Mem-
ory Block (AMB) is created. AMB is a memory design 
abstraction for structured data access.  This AGU imple-
mented both as custom design and also on an FPGA, and 
their performances are compared.  They claim reduction 
in routing resources and required area when implemented 
on an FPGA.  
Efficient generation of Address sequences like Zigzag for 
entropy coding after DCT operation, sequence of ad-
dresses to fetch the twiddle-factors in FFT operation and 
sequence of addresses to fetch the data in convolution 
operation are essential for Multimedia Processing. Ad-
dress sequence generation for kernel operations on both 
stored data and streaming data are also necessary. 
This paper describes an Address Generation Unit suitable 
for a Dynamically Reconfigurable Data-path Processor; 
capable of generating one address per clock in required 
sequence; and can be synchronized with the data-path 
operations by using the Address-Generate- Enable signal.   
The following address sequences suitable for DSP ker-
nels are supported:  
• Data, twiddle-factor fetch and result write for FFT 

kernel. 
• Data, impulse response fetch and result write for 

Convolution Kernel - for both stored and streaming 
data. 
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• Data, coefficient fetch and result write for Linear 
Phase FIR filter – for streaming data input. 

• Data fetch from macro-blocks for Motion Estimation 
kernel. 

• Zigzag - suitable for fetching data for entropy coding. 
• Other modes like increment and decrement etc. 

Hardware for each of these addressing modes was de-
veloped separately and later a Comprehensive Address 
Generator Unit (CAGU) that can generate all the address 
sequences listed above was designed. The AGU devel-
oped is tailored to work with a DRDP, though the con-
cept can be used with any data-path unit with appropriate 
synchronization. As an example of application of this 
CAGU, consider an array of reconfigurable processor 
data-paths that support execution of Single Kernel Multi-
ple Data (SKMD) implying concurrent fetch of data from 
multiple databanks/data-streams for executing the same 
kernel operation on these data. The proposed CAGU can 
be used in such applications as well.    
A set of CAGUs pertaining to access of data for a spe-
cific kernel can be configured by selecting suitable ad-
dressing modes and may be used to generate address 
sequences required by multiple data-paths.  
AGU and DRDP are designed as parameterized word 
length and address size using a Hardware Description 
Language in fully Structural style of coding. Thus the 
hardware synthesized will be identical to the description 
in the code. AGU and the DRDP provide necessary status 
signals back to the controller and are controllable by a 
micro-programmed controller. Hence reconfigurability is 
possible with just change of the micro-program. 
[9] reports AGUs developed for data access and twiddle-
factor fetch suitable for a complete N point FFT kernel, 
implementation of N point FFT kernel using Dynamically 
Reconfigurable Data Path (DRDP), AGUs for data, im-
pulse response access for a complete Convolution kernel 
with implementation of kernel and AGU for accessing 
data from N x N pixel array in a Zigzag order used in 
entropy coding after DCT. 
 
3.1. Address Generation for N point FFT Kernel 
Jacobson et al. [10] discuss an implementation of dedi-
cated address generator unit that supports reconfigurable 
radix-4 FFT processor.  It uses two counters namely 
group counter and butterfly counter.  The primary ad-
dress is decomposed into group and butterfly counters.  
The addresses rotate in groups of 4 after first stage. 
FFT kernel can be executed in a single DRDP in a folded 
manner or can be executed in four DRDPs in a chained 
manner.  A typical data-path that implements a single 
Butterfly operation in Decimation-In-Frequency (DIF) is 
given in [9] and on the same lines data-path for Decima-
tion-In-Time (DIT) scheme is also implemented.  
In each of these data-paths 4 DRDP units have been 
cascaded and configured to form a single data-path capa-
ble of performing one butterfly operation for every two 
clocks so that N point FFT operation is completed in 
Nlog2(N)+4 clock cycles where a constant of 4 clock 
cycles corresponds to initialization of the DRDP and 
write back of the last butterfly result. The setup assumes 
that the twiddle-factors are pre-computed and saved in 
memory. 
 

3.1.1. Bit Reversed Address Generation for N point FFT: 
Many algorithms to compute bit-reversed address are 
available in literature. Many of them are best suited for 
coding using high level languages on microprocessor or 
digital signal processor [11, 12 and 13]. These algorithms 
can be classified as those based on heuristic [11] and 
algorithms using Seed-Table [13]. Address generation 
using these methods have a long delay as compared to the 
data-path latency and the memory access delay. 
Hardware Address Generation Units (AGUs) have also 
been developed for array processors [14]. Nwachukwu 
[14], Hulina [7] implemented the Bit-Reversed address 
generation using Counter-Multiplexer method. Counter-
Multiplexer method can generate variety of patterns, but 
as the number of addresses increase, area increases expo-
nentially and also results in increase in power dissipation 
and leakage.  
The methods proposed in [9] can generate sequence of 
addresses suitable for many of multimedia algorithms.  
They use adders, shifters, counters in the data-path and 
very few gates for the simple control logic. This trans-
lates to a linear increase in transistor count with increase 
in the number of address bits unlike counter-multiplexer 
method. Banerjee et al. [15] describe an algorithm for 
address generation for data access for N point FFT. The 
hardware developed for implementing the algorithm uses 
3 loadable down counters and allied control circuit. 
Hardware developed by [9] for the same functionality 
needs only 2 shift registers and allied control circuit as 
depicted in Figure 2. The shifters hold data patterns like 
“11..1100..00” and “00..00100..00” and are shifted once 
after completion of each stage of FFT and only 2 bits 
toggle in each of the shifters as compared to multiple bits 
toggling in each of the counters after every address gen-
eration as in Banerjee et al. [15]. 

 

Shift Right
Arithmetic

Shift Right
Logical

Shift
Control Logic

Correction
Generate Logic

Bf_Br_Add_Sub

Offset_Addr_Reg
Offset

Correction

Mask N/2

 
Figure 2.  Hardware schematic of Bit Reversed AGU 

 
The input or the output samples need to be re-ordered in 
bit-reversed fashion depending on whether DIT or DIF 
approach is employed. This reordering is done by ex-
changing data in memory locations pointed by pairs of 
address generated by bit-reversed address generator. For 
the actual exchange the data elements of the pair are 
fetched from memory, stored in registers of the DRDP 
and written back in exchanged order from registers. For 
fetching the data and writing it back we use two AGUs 
appropriately synchronized. 
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3.1.2. Address Generation for accessing Twiddle-factors 
for N point FFT: 
For a FFT butterfly operation, a pair of data operands i.e., 
one fetched from bit-reverse ordered address and the 
other being the twiddle-factor are needed. An algorithm 
for generating sequence of addresses for fetching twid-
dle-factors for any N point FFT with log2N stages has 
been developed, hardware designed, simulated, tested 
and the block schematic is as shown in Figure 3. 
 3.2. Address Generators for Convolution Kernel 
Convolution approach is used in implementing Digital 
Filters like Finite Impulse Response (FIR) filter. Linear 
Phase FIR filters are typically used where filter coeffi-
cients are symmetric or anti-symmetric. When an input 
sequence of length N is convolved with an impulse re-
sponse of length M, the output sequence is of length 
N+M-1. The address generation scheme developed as-
sumes that the given data is padded with M-1 zeroes at 
both ends. The sample points of impulse response are 
stored in a reverse order in the memory.  
The sequence of addresses for fetching coefficients fol-
lows a Modulo M pattern and that for writing the convo-
lution result Divide by M. The Convolution kernel with N 
data points and M impulse response points is executed in 
((N+M-1) x N + 3) clock cycles where the 3 clock cycles 
correspond to initialization and write latency of last result. 
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Figure 3. Block schematic of AGU for FFT Twiddle-Factor fetches 
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Figure 4. Hardware schematic of AGU for Data fetch of Convolution 
kernel - stored data 
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Figure 5. Hardware schematic AGU for data fetch for Convolution 
kernel - streaming data 

 
3.2.1 Address Generator for fetching data for convolution 
- stored data and streaming data: 
The convolution operation may be performed on stored 
data or streaming data. Each of these operations needs a 
different type of AGU. AGU suitable for both applica-
tions have been developed. The algorithm for fetching 
the coefficients will remain the same irrespective of 
whether the kernel is working on stored or streaming data. 
The AGU used for storing the convolved data will use 
linear or circular addressing mode depending on whether 
the kernel is working on stored or streaming input. 
The hardware schematic of AGU for data fetch in case of 
stored data is shown in Figure 4. In case of streaming 
data, the data samples are stored in a circular buffer. 
Schematic of the AGU hardware is as shown in Figure 5 
and the algorithm for generating the address for fetching 
streaming data can be summarized as shown in Figure 6. 
 

Reset: Reset Counter1, Counter2, Offset;
Begin: If (Counter1==N-1) {
            Then Counter1=0, Counter2=Counter2 + 1;
             Else Counter1=Counter1 + 1;}
         If (Counter2==N)Then Counter2=0;
         If ( (Counter1+Counter2) < N ) {
            Then Correction=0;
            Else Correction=N;}
         Offset=(Counter1+Counter2)-Correction;
         Go to Begin;

 
Figure 6. Algorithm of AGU for data fetching for Convolution kernel - 
streaming data 
 
3.2.2. Address Generator for accessing impulse response 
samples in convolution:  
The algorithm for generating the addresses for fetching 
impulse response is of Modulo N type and is similar to 
that of data fetch for  convolution for stored data except 
for the correction ‘-(N-1)’ whenever the counter reaches a 
value of N-1; and is as shown in Figure 7. 
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3.2.3. Address Generator for accessing convolved data 
write-back: 
The algorithm for generating the addresses for result 
storage is of Divide by N type and is similar to that of 
coefficient fetch for convolution except the correction is 
‘0’ when the counter value is less than N-1 and correction 
is ‘1’ when counter value is equal to N-1; and is as shown 
in Figure 8. 
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Figure 7. Hardware schematic of AGU for impulse response samples 
of Convolution kernel 
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Figure 8. Hardware schematic of AGU for result storage of Convolu-
tion kernel 
 
 3.3. Address Generator for accessing streaming data for 
a Linear Phase FIR Kernel 
Consider a case of Linear phase FIR filter with even 
number of coefficients h(n) and they are symmetric. For 
example: let N=4; then h(0)=h(3) and h(1)=h(2). Hence 
y(n) can be written as 
 y(n) = [x(n)+x(n-3)]h(0) + [x(n-1)+x(n-2)]h(1) 
A novel algorithm for generating appropriate sequence of 
addresses to fetch the data has been developed, hardware 
implemented and tested. The schematic of the hardware 

is shown in Figure 9 and the corresponding algorithm can 
be summarized as shown in Figure 10. The address gen-
eration scheme for fetching filter-coefficients and storing 
the results are similar to that of convolution kernel with 
streaming data. 

 
3.4. AGU for data fetch for Motion Estimation using 
Block Matching Technique Kernel 
Between adjacent frames of video there will be little 
movement of objects including the background. An ob-
ject in the previous frame tends to get displaced/rotated 
in the next frame by a small amount. Practically there 
may not be much of a difference between the frames. 
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Figure 9. Hardware schematic of AGU for Data fetch for Linear Phase 

FIR Kernel - streaming data 
Frames may contain multiple slices and the slices can be 
divided into smaller blocks called Macro-Blocks (MB). If 
a macro-block in the given slice in current frame is com-
pared with the corresponding macro-block or in the 
neighborhood of the corresponding macro-block in the 
prior frame, the difference will normally be very small. 
The search area for macro-block match is restricted to 
search parameter p pixels around the macro block in a 
slice in the previous frame. Goal of Motion Estimation 
(ME) is to search for such a block for which the cost 
function is the least, within a prescribed limit and com-
puting the displacement of the block from the previous to 
the current frame. This operation needs to be done for all 
blocks in the frame and is a computationally expensive 
operation; motion detection over longer distance needs 
larger value of search parameter and results in exponen-
tial increase of computational complexity. Popular cost 
functions are Sum of Absolute Difference (SAD), Mean 
Absolute Difference (MAD) and Mean Square Error 
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(MSE). MSE as a cost function is computationally more 
intensive compared to MAD.   

 

Reset: Reset Counter, Offset;
Begin: If (Counter==N-1) {
             Then Counter=0;
             Else Counter=Counter+1;}

S=(N-1)-Counter;
          If Counter0 {
             Then t=|(Current_Offset-S)|N

Else (Current_Offset+S);}
          If Current_Offset >= N/2 {
              Then u=Current_Offset-(N/2-1);
              Else u=Current_Offset+(N/2+1);}
          If Counter==N-1 {
             Then v=u; Else v=t;}

Next_Offset=|v|N;
          Go to Begin;  

Figure 10. Algorithm of AGU for fetching data for Linear Phase FIR 
kernel - streaming data 
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Figure 11. Hardware schematic of AGU for data fetch for Motion 
Estimation kernel 
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Figure 12. Sequence of address generated in zigzag addressing mode 
 
The AGU assumes that the data of the current and the 
reference slices are kept in the memory as rows; the 
width, height of the macro-block (mb_wd, mb_ht) and 
the width of slice (sl_wd) are given. The AGU uses 2 up-
counters to maintain the row and column counts. Block 

schematic of the hardware implementation is as shown in 
Figure 11. 
 
3.5. Zigzag Address Generation for accessing N x N pixel 
array 
JPEG uses Entropy coding for compressing the data after 
performing DCT and Quantization. After computing the 
2D-DCT of an N x N image, it can be seen that the signif-
icant coefficients are present in top-left corner of 2D 
matrix. For compressing the coefficients further, it is 
necessary to process only these coefficients. 
Entropy coding requires the quantized data of N x N pixel 
array to be read in zigzag fashion as shown by the se-
quence of arrows in Figure 12. An algorithm has been 
developed to generate this address sequence for any even 
value of N x N, hardware has been developed, simulated, 
and tested. The block schematic is as shown in Figure 13. 
Cond1 to Cond7 are conditions that check if the counter 
value pair has reached the boundary of the pixel array 
map and hence a change of direction in scanning is re-
quired. 
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Figure 13. Hardware schematic for Zigzag address generation 
 
4. Results and Conclusions  
Efficient Address Generation Algorithms and hardware 
suitable for speeding up execution of DSP kernels using 
DRDPs have been developed and tested. The tests prove 
the efficacy of the AGUs developed, the ability to syn-
chronize the data access and computation of result using 
the DRDPs as demonstrated in cases of a 8 point DIF 
FFT kernel, Convolution kernel and SAD computation in 
Motion Estimation kernel. Timing details of the various 
kernel executions are shown in Table 1. 
More simulation results of these DSP kernel execution 
using the CAGU and the DRDP are published in our 
earlier papers [9, 16]. 
The algorithms have been implemented in VHDL in a 
fully structured coding style. The data width and the 
address width are parametered. The coding completely 
adheres to structural style and the algorithm is using 
components that scale linearly in terms of complexity of 
number of transistors in the hardware. All the algorithms 
have been simulated and tested.  
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Figure 14. Snapshot of the simulation result of FFT kernel 

 

 
Figure 15. Snapshot of the simulation result of convolution kernel 

 
Structured approach of the coding helps in identifying 
common components like counters, shifters, adder and 
comparators etc used in implementing various address-
ing modes. A Comprehensive Address Generator Unit 
(CAGU) that can support 11 addressing modes listed 
earlier has been designed using Up/Down Counters 
cum Logical/Arithmetic Right Shifters, an Accumula-
tor, Comparators and little glue logic. The CAGU has 
been tested.  The simulation results of FFT kernel and 
convolution kernel are shown in Figure 14 and Figure 
15 respectively. 

 
 Table 1. Timing details of various kernel executions 
Kernel Number of 

clocks 
Overhead 
(initialization 
and latency) 

FFT (N point) N log2N 4 
Convolution (N+M-1)N 3 
ME: SAD (N x M) N x M 2 

 

 
4.1. ASIC Implementation of the CAGU 
The CAGU was synthesized, placed and routed. The 
post synthesis report is summarized in Table 2. The 
snapshot of the layout is shown in Figure 14.  
 
Table 2. Synthesis report of CAGU for various address widths 
Criteria/Address width 
(clk period) 

8 bit 
(6ns) 

16 bit 
(8ns) 

24 bit 
(10ns) 

Cells used 1016 1975 2948 
Area in µ2 21802 43019 64202 
Leakage power in nW 39.46 77.84 117.46 
Dynamic power in mW 2.95 5.43 8.65 
 
The functional verification was carried out on the ex-
tracted net-list and the CAGU is functioning as desired. 
The design uses Faraday standard cell library based on 
UMC 0.18µ technology and has been fabricated with 
Europractice. The chip is currently being tested. The 
entire implementation process was carried out using 
Cadence Tool suite; functional simulation and post 
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extraction behavioral simulation were carried out with 
ModelSim tool. Tools and fabrication were supported 
by Special Manpower Development Program of DIT, 
Government of India. 
The concept proposed demonstrates the utility of dedi-
cated AGUs and proves the following: (i) Computation 
of one address per clock per AGU, (ii) Comprehensive 
AGU can be configured to generate address sequence 
over the entire DSP kernel without any intervention of 
any kind during the execution of the kernel, (iii) With 
the help of these AGUs and suitable reconfigurable 
data-path the innermost loop of the chosen DSP kernel 
can be executed in one clock period and (iv) Circuit 
complexity and power consumption of the circuit in-
creases linearly with increasing address width. 
 

 
Figure 16. Snapshot of the layout of a 8 bit wide CAGU 
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