
Adapting Pettigrew’s Amplitude-locked loop for
Fast and Synchronized Extraction of Fundamental

and Harmonics
Jora M. Gonda† and Ritesh A. Bhat‡

Department of Electrical and Electronics Engineering
National Institute of Technology Karnataka

Surathkal, INDIA
email: †jora-and-itriplee@ieee.org, ‡rit1989@gmail.com

Sumam David S.§
Department of Electronics and Communications Engineering

National Institute of Technology Karnataka
Surathkal, INDIA

email: §sumam@ieee.org

Abstract—The separation of the fundamental from a distorted
waveform is an important component in the implementation
of a custom power device. A novel scheme for synchronous
extraction of harmonics/fundamental in a distorted periodic
waveform is described here. An intuitive explanation is provided
for the operation of the algorithm focusing on the process
of amplitude locking and filtering capability. Performance as-
pects are analysed and discussed. The design parameters are
identified and their influence on the performance parameters
are identified. A means for choosing design parameters to
achieve the optimum performance is provided. Main features
of the proposed scheme are its simplicity, excellent insensitivity
to harmonics, noise rejection, availability of both fundamental
and harmonics without additional processing, and the speed of
operation. The claims are verified through extensive simulation
studies in MATLAB®/Simulink®.

Index Terms—Amplitude-locking, phase-locking, harmonics
extraction, amplitude demodulation.

I. NOMENCLATURE

xI(t) Instantaneous value of amplitude modulated carrier-
based input signal xI .

y(t) Instantaneous value of extracted carrier from xI .
d(t) Desired amplitude of the carrier output y.
c(t) Instantaneous value of the modulating signal in xI .
u(t) Instantaneous value of reciprocal of c(t).
xP (t) Instantaneous value of phase-locked loop (PLL) cor-

responding to the carrier.
Ck(t) Instantaneous amplitude of kth harmonic in xI .
ωo Frequency of fundamental component in xI .
xO(t) Instantaneous value of output signal.
aO(t) Instantaneous amplitude of the carrier in y.
AO(t) dc component in aO.
xE(t) Instantaneous value of error signal.
XE(t) dc component in xE .
BP Amplitude of PLL output.
ωc Cut-off frequency of low-pass filter.
G Integrator gain.

II. INTRODUCTION

The extraction of harmonics or the fundamental components
of voltages and/or currents is one of the main parts in the

implementation of custom power devices. The techniques
available can be broadly classified into single-phase and three-
phase. They can also be classified into open-loop techniques
and closed-loop techniques. A comparative evaluation of some
of these methods can be found in [1] and the importance and
applications of proper extraction can be found in [2]. The
closed-loop techniques have the distinct advantage of being
capable to stay synchronised(zero-deviation, amplitude/phase-
locked, to be more precise) to the input, which is very
important in all applications connected to the grid. Extract-
ing the fundamental/harmonics in a single-phase signal in
a closed-loop scheme is the main focus of this paper. The
proposed scheme falls into the class of closed-loop techniques
presented in [3]–[7]. Phase and amplitude locking has been in
use in the communication area for the purpose of amplitude
modulation/demodulation. In the year 1991, a vector-locked
loop(VLL) was presented by DaSilva in a patent [6] which
uses peak detection in the magnitude detection stage. Pettigrew
presented an amplitude-locked loop(ALL) in another patent [8]
in the year 1994. Both the aforementioned schemes assume
the input to be a sinusoid and hence can not directly be used
for extracting harmonics from distorted inputs. Later Moir [3]
has presented an analysis of the scheme by Pettigrew. Luo, et.
al., [4] has the desirable feature of staying locked to the PLL
reference and is very simple to understand and implement.
However it’s settling-time is a function of the integrator gain
and an increase in the gain to improve dynamic performance
results in increased distortion in the filtered output. A VLL
for synchronous extraction of harmonics was presented for the
first time in 2002 by H. Karimi et. al., [7]. The performnace
is similar to that of the scheme presented by Luo, et. al.,
since it uses the same structure in the amplitude extraction
section of the algorithm. An improved scheme was presented
by M. Karimi-Ghartemani et.al., in [5] in 2003, where a low-
pass filter is introduced in cascade with the integrator which
improves the steady-state response and allows for a higher
gain thereby reducing the settling-time.

In this paper the ALL given by Pettigrew is adapted for
extraction of harmonics using its demodulation property. It’s



unique feature is in identifying that the ALL can also do
the job of fundamental extraction by extending the analysis
provided by Mior [3], developing the mathematics to prove the
idea, and suggesting modifications to improve the performance
parameters. A flat second-order-low-pass filter(SOLF) pre-
tuned to a cut-off frequency (ωc) for smoothing the error in the
fundamental extraction is used for improving the performance.

The paper is organised as follows: In Section III, a brief
review of the analysis presented by Moir is presented inorder
to understand the operation and to make the context clear.
The adaptation of the scheme to extract the fundamental is
explained in Section IV with mathematical proof. The design
parameters influencing the performance parameters are iden-
tified. Design considerations are discussed in Section V and
empirical rules are developed for design. Simulation results
are presented in Section VI.

III. BRIEF DESCRIPTION OF PETTIGREW’S ALL

The amplitude-locked loop (ALL) proposed by Pettigrew in
the year 1994 in a patent [8], is shown in Fig.1 below. T. J.
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Fig. 1. Block diagram of Pettigrew’s ALL

Moir [3] presented an analysis of the circuit. The idea used
is captured in the following short description. In the circuit
shown in Fig.1, the output of the multiplier-M1 is,

y(t) = u(t)xI(t). (1)

Consider an input,

xI(t) = c(t) cos(ωot+ φi) (2)

where c(t) is the modulating signal and cos(ωot+φi) being the
carrier. For the purpose of analysis c(t) and φi are considered
initially constants, but in practice may be time varying. It is
assumed that c(t) 6= 0. The signal xP (t) is given by,

xP (t) = BP cos(ωot+ φp) (3)

obtained as the output derived from a PLL tuned to the carrier
frequency ωo. Let the output of the multiplier-M2 be,

aO(t) = xP (t)y(t). (4)

When the ALL is ’in lock’ the error signal,

XE(s) = D(s)−AO(s) (5)
= D(s)−XP (s) ∗ Y (s) (6)

where ∗ denotes convolution. With the approximation of
ignoring 2ωo terms in xE(t), and considering H(s) = G

s and
BP = 1 it is shown in [3] that,

U(s) =
G

s+ c
G

2
cos(φn − φi)

D(s). (7)

With step input of magnitude D for d(t) and with xE(t)
converging to zero in steady state, the response is,

u(t) =
2D

c cos(φn − φi)
. (8)

If φi = φn, which is usually the case, then,

u(t) =
2D
c

(9)

i.e., u(t) becomes the scaled inverse of the amplitude, c of the
input xI(t). Then from (1) and (2),

y(t) = 2D cos(ωot+ φi) (10)

which is a scaled version of the carrier cos(ωot+ φi), where
2D is the scalar, as decided by the amplitude reference d(t) =
D. Note that y(t) is devoid of the modulating signal c, hence is
amplitude demodulated version of xI(t). Equation (10) shows
that the system has the ability to remove the modulating signal
leaving only the carrier. Then u(t) becomes the scaled inverse
of the amplitude of the input. That is, the ALL tracks the
inverse of the modulus of the input.

Although the analysis is only true for constant c, it is
intuitive that for the time-varying case with the frequency and
depth of modulation within the tracking range,

u(t) =
2D
c(t)

(11)

and y(t) is still given by (10).

IV. ADAPTATION OF PETTIGREW’S ALL FOR
FUNDAMENTAL/ HARMONICS EXTRACTION

A. Basic operation

Consider a signal input xI(t), a periodic waveform with a
dc component,

xI(t) = xDC(t) +
∞∑
k=1

Ck cos(kωot+ φk). (12)

The output of the PLL (pretuned to a free-running frequency
of ωo) which is purely sinusoidal and in phase with the
fundamental component of xI(t) is,

xP (t) = cos(ωot+ φ1) (13)

where BP = 1 is considered. Now each term in (12), can be
considered as the product of a modulated signal determined by
the coefficient Ck and a carrier determined by ωk. If there was
only fundamanetal at ωo and with PLL tuned to ωo, it is clear
from (8) and (9) that C1 can be obtained by the reciprocal of
u(t) and appropriately scaled due to the commanded amplitude
D factor. It is also clear from (9) that D shall be chosen as 0.5.



It is also true that aO, which is obtained as a multiplication of
two in-phase sine waves of like frequency contains a dc, equal
to half the product of each of the amplitudes. Hence in this
scheme D shall be set as 0.5. It should be noted that aO also
contains 2ωo components, which is attenuated by the integrator
in the H(s). Additional attenuation can be achieved, as will
be explained shortly. The product of C1 and xP (t) recovers
the input signal for this case of single frequency input. Thus,

xO(t) = c(t)xP (t). (14)

It should be noted that, under the steady-state, the fundamental
amplitude of y(t) shall be unity, until then the corrections will
continue.

B. Principle of working for input with dc and harmonics

It should be noted that any component in xI(t) other than
ωo, including dc, will not produce a dc in aO(t), according
to (4). Thus it will not affect the transient response of u(t)
and hence c(t), as it is decided by the rate of charging
the integrator which is determined by the dc component in
xE(t). So, all such terms in (12), will not affect the transient
response. However they have a direct bearing on the steady-
state response of c(t), and show up as ripple in it. However
the steady-state and transient performances can be improved
by inserting a low-pass filter F (s) as shown in Fig. 2.
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Fig. 2. Block diagram showing the adaptation

Ideally F (s) should pass only the dc, blocking the funda-
mental (which may creep-in due to the presence of dc in xI )
and all higher order harmonics. Hence the cut-off frequency
should be considerably less than ω1. Then there will be faster
attenuation of the harmonics in the loop and the settling-time
improves alongwith improvements in the other performance
parameters.

V. DESIGN CONSIDERATIONS

It is to be noted that the design parameters are: gain G and,
cut-off frequency ωc and Q for the filter F (s). And on the other
side the performance parameters are: settling-time, harmonic
rejection, amplitude modulation, and noise rejection. Extensive
simulation study is done and experiments are conducted to
arrive at a good set of values for the design parameters. It
should also be noted that there is a need to limit the lower
level for u(t), atleast during the start-up. Otherwise division
by zero can create problem and also the amplitude c(t) of

the fundamental in xO, will start building from unrealistically
large values, making the settling time unnecessarily larger.
This limit can be chosen with the knowledge of practical
range of amplitude for the fundamental under the given
circumstances.

A. PLL Design

This scheme works in association of a PLL. Note that the
proposed ALL output will be of the same frequency as that
output by the PLL. Therefore it is necessary to design the
PLL with a free-running frequency close to the fundamental
frequency component in the input. The PLL performance can
be optimized by well established techniques.

B. Design of the circuit

The function of the low-pass filter is to attenuate the
harmonics generated in aO(t) with the presence of higher
order harmonics in xI(t) and as well as the second harmonic
produced due to the interaction of the fundamanetal in xI(t)
with xP (t). And it is also necessary that it does it as fast
as possible. Hence it is found through experiment that a flat
second- order-low-pass filter is a good choice and a suitable
cut-off frequency of ωc is selected. The transfer function of
the low-pass filter is as given below:

F (s) =
1

s2

ω2
c

+ s
Qωc

+ 1
(15)

where ωc is the cut-off frequency in rad/s. It is observed while
tuning that an increase in gain G (for a fixed ωc), results in an
increases in steady-state error and a decrease in settling time.
A similar relation holds good for a change in ωc (for a fixed
G). This makes tuning of the algorithm very easy, however
the relations are not linear.

VI. SIMULATION RESULTS

Extensive simulation studies were conducted on this scheme
using MATLAB® and Simulink®. A simulation step-size of
10µs is chosen. Various features of the system with ωc = 70π
rad/s, Q = 0.85, and G = 118 were explored for different
inputs. A lower limit of 0.2 for u (≡ 5 for C1) was set. The
results are presented in what follows.

A. Response to Step Input: The amplitude C1

A square wave input of unit amplitude with a frequency of
ωo = 100π rad/s, is applied to the circuit at t = 0.1 s. The
settling-time indicated by the signals u and c is captured in
the Fig. 3. It can be observed that the system settles to final
value within around 1.5 cycles, which much better than the
existing schemes.
B. Response to Step Input: The fundamental x1(t)

The input square wave and the fundamental extracted sig-
nals are as shown in Fig. 4. The expected funadamental
amplitude (± 4

π ) is also ploted to show the settling-time. It
can be clearly seen that the funadamental settles within 1.5
cycles.



Fig. 3. Step response showing settling time for a square wave input

Fig. 4. Out-put for a square wave input

C. Response to Step Input: The Harmonics in xI(t)

The harmonics extracted from the square wave is shown in
Fig. 5.

Fig. 5. Harmonics extracted from a square wave input

D. Response to Input Amplitude Modulation

The performance of the scheme is verified for tracking a
slow varying amplitude, as might happen in power system.
This feature is also important for amplitude demodulation. The
input considered is:

xI(t) = [1 + 0.2 sin(4πt)] sin(100πt). (16)

Fig. 6 displays an area zoomed to around one cycle of the
modulating signal in order to clearly show the negligible phase
lag in input modulating signal and the output.

Fig. 6. Output amplitude to an input whose amplitude is modulated

VII. CONCLUSIONS

A scheme for obtaining synchronized selective-frequency
amplitude-locking on distorted signals is presented, by adapt-
ing the Pettigrew’s ALL. An intuitive explanation of the work-
ing of the loop is presented. Clear explanations are given for
the selection of G and Q. Performance claims are supported
by simulation results. The features of the proposed scheme are
as follows: it has features similar to a PLL, the performance
can be optimized by appropriate choice of G, ωc, and Q, the
transient response is better (∼= 1.5cycles), has excellent insensi-
tivity to harmonics, and noise rejection. It can find applications
in: synchronous separation of the fundamental and harmonics
in a distorted periodic waveform, amplitude and frequency
tracking, noise rejection, and amplitude demodulation/peak
detection.

As a scope for future work a complete and rigorous math-
ematical analysis of the proposed scheme can be in order.
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