
Improved Algorithms for Implementation of MPEG2
AAC Decoder on FPGA

Rajath R. Shenoy, Sudhir S. Naik, and Sumam David S., Senior Member IEEE
Deptartment of Electronics & Communication Engineering

National Institute of Technology Karnataka, Surathkal
Mangalore, INDIA
sumam@ieee.org

Abstract— This paper discusses methods to implement the
IMDCT filter bank, Noiseless decoder, Inverse quantiser and
Scale factor application modules of MPEG-2 Advanced Audio
Coding decoder more efficiently when implemented on FPGAs.
The efficiency of the algorithms has been validated through
implementation on Xilinx Virtex II FPGAs.

I. INTRODUCTION
The goal is to implement MPEG-2, Advanced Audio

Coding (AAC) decoder efficiently on System on
Programmable Chip (SOPC) or Field Programmable Gate
Arrays (FPGA).

MPEG-2 AAC is a state of art audio coding standard which
is replacing the in vogue MP3, as portable music download
standard. It has better compression rates and perceptual quality
better than CD quality audio at bit rates of 96kbps [1] as
compared to MP3. The basic structure of the MPEG-2 AAC
system is shown in Fig. 1. The functions of the decoder are to
find the description of the quantized audio spectra in the bit
stream encoded as per [2], decode the quantized values and
other reconstruction information, and reconstruct the quantized
spectra using tools activated by the bit stream. The signal
spectra as described by the input bit stream, is then converted
from frequency domain to the time domain, with or without an
optional gain control tool. Following the initial reconstruction
and scaling of the spectrum reconstruction, there are many
optional tools that modify one or more of the spectra in order to
provide more efficient decoding.

Traditionally the design of audio decoding systems would
be centred on a low-power, low-cost Digital Signal Processor
(DSP) as central processing core. The general-purpose DSPs
by definition perform relatively well over a wide range of
applications rather than addressing special-purpose needs. The
serial instruction stream inherent to microprocessor
architectures limits DSP performance.

DSPs do well in applications dominated by control flow or
decision making but FPGAs are more suited for
computationally intensive tasks that can be executed in parallel.
FPGA offer flexibility and scalability in hardware. The ability
to manipulate FPGA logic at the gate level allows designers to
create a custom processor that can efficiently implement the
function the application requires and simultaneously perform

Figure 1 MPEG-2 AAC Decoder Block Diagram [2]

all application sub functions in parallel. Further, new families
of FPGAs are integrated with lots of block memory, signal
processing function blocks, are of low power, and are
competitively priced, especially on a price performance scale
[3].

The input to the bit stream demultiplexer is the MPEG-2
AAC bit stream. The demultiplexer separates the data stream
into the parts for each tool. The noiseless decoding tool parses
the bit stream, decodes the Huffman coded data and
reconstructs the quantised spectra and the Huffman and DPCM
coded scale factors. The inverse quantiser tool takes the
quantised values for the spectra, and converts the integer values
to the non-scaled, reconstructed spectra. The M/S tool converts

Bitstream
Demultiplexer

Inverse
Quantizer

Scale Factor
Applic ation

M/S

Prediction

Intensity
Coupling

TNS

Filter Bank

Gain Control

Legend
 Data

Control

13818 -7
Coded

Bitstream

Noiseless
Decoder

spectra pairs from Mid/Side to Left/Right under control of the
M/S decision information in order to improve coding
efficiency. The prediction tool reverses the prediction process
carried out at the encoder. The intensity stereo/coupling tool
implements intensity stereo decoding on pairs of spectra. The
temporal noise shaping (TNS) tool implements a control of the
fine time structure of the coding noise. The filterbank tool
applies the inverse of the frequency mapping that was carried
out at the encoder. An inverse modified discrete cosine
transform (IMDCT) is used for the filterbank tool. When
present, the gain control tool applies a separate time domain
gain control to each of 4 frequency bands that have been
created by the gain control filterbank in the encoder.

This paper suggests methods for implementing the
following four AAC decoder modules more efficiently.

• Filterbank

• Inverse Quantization

• Scale factor Application

• Noiseless Decoder

II. FILTERBANK
The filterbank converts the frequency-domain signals into

time-domain signals. The encoder uses Modified Discrete
Cosine Transform (MDCT) to convert the signals from time
domain to the frequency domain where it is then compressed
and transmitted. At the decoder the signals in frequency-
domain are transformed into time-domain using IMDCT. This
is then followed by windowing and overlap addition of the
windowed coefficients.

() ()
1

2

0
0

2 2 1[]cos , 0
2

N

k

x n X k n n k n N
N N

π
−

=

 = + + ≤ <
∑ (1)

where, n is the sample index; k is the spectral coefficient
index; N is the window length based on window sequence
value and n0= (N/2 +1)/2

A. Butterfly implementation
Fast algorithms for implementing Discrete Cosine

Transform (DCT) exist [4]. Implementation of IMDCT is
almost equivalent to that of DCT-IV.

DCT-IV(N)=A(N-1)+M(N)+DCT-IV(N/2)+DCT-III(N/2) (2)

where DCT-III(N) and DCT-IV(N) are the arithmetic
complexity of the type-III and type-IV DCT with length N.
A(x) and M(y) indicate that number of real additions and
multiplications required are x and y, respectively [5]. Though
this implementation reduces the number of additions and
multiplications, it inherently comes with complexity. Study of
previous implementations show that a straight forward
implementation with ROMs to store the DCT and windowing
coefficients, was more efficient. This is because the time taken
by arithmetic operations is not the bottleneck in the
implementation of the entire block. Another benefit from this

approach is that the amount of logic used in the DCT i.e. the
area occupied on the FPGA is small. Other approaches to
calculate IMDCT faster and in a more efficient way were also
examined.

B. Using Fast Fourier Transform (FFT)
A relation between IMDCT and FFT was found and this

implementation was used to calculate IMDCT [3].

() ()

()

() ()

()

0

0 0

0 0

1
2

0
0

1 2 12
2

0

21

0

2

2 2 1[] cos
2

2 [] R e

2 R e []

2 R e ()

N

k
N

j n n k
N

k

j k jN n n n n
N N

k

j k jn n n
N N

x n X k n n k
N N

X k e
N

X k e e
N

N ptFFT X k e e
N

π

π π

π π

π
−

=

− − + +

=

− −− + +

=

− − +

 = + +

 =

 =

 =

∑

∑

∑

 (3)

()

=

+−

 +−

01
2)(Re2)(

nn
N
jN

N
kj

eekXNptFFT
N

nx
ππ

 (4)

Two functions were written in MATLAB to calculate 2048
point IMDCT; first based on (1) and the second based on (4).
On running these two functions on a Pentium 4, 2.0GHz, 512
MB system, we obtained the following results averaged over
10 runs.

Time taken by first function = 0.603 seconds
Time taken by second function = 0.0122 seconds

The second function is 49.426 times faster than the first
function.

The IMDCT module using (4) was implemented in VHDL
using Xilinx System Generator. The implementation block
diagram is shown in Fig. 2. The FPGA chosen was Virtex II
XC2v2000 bf 957-6. The device utilization summary for
Filterbank is

No. of slices 4075 of 10752 38%
No. of Flip Flops 5158 of 21504 24%
No. of 4 input LUTs 5557 of 21504 26%
No. of Block RAMs 33 of 56 59%
No. of 18*18 Multipliers 31 of 56 55%

III. INVERSE QUANTIZATION
A non uniform quantiser is used in the encoder for

quantisation of the spectral coefficients. Therefore the decoder
must perform the inverse non uniform quantisation after the
Huffman decoding of the scale factors and spectral data. The
inverse quantization is described by

 x_invquant = sign(x_quant) * |x_quant|4/3 (5)

where x_invquant is the inverse quantized value, x_quant is the
quantized value and sign(x) gives the sign of x.

Figure 2 Simulink block diagram of Filter bank module

A. Implementation
The expression for inverse quantization is non-linear. Fixed

point implementation of such non-linear expressions in VHDL
is very difficult and consumes a lot of resources like multipliers
and takes a lot of time for calculation. So a more efficient
method of calculation of inverse quantized values is needed.
One approach is the use of fixed point approximations of the
function that could be used for approximate calculations.

An approximation using second order regression is given as
[5]

x_invquant = 0.04 * x_quant2 + 1.98 * x_quant -1.77 (6)

Comparisons between actual values and these
approximated values in Fig. 3 show that the approximations are
valid only when the values of x_quant are small.

A Look Up Table (LUT) based implementation was chosen
to compute inverse quantized values of noiselessly decoded
spectral values. In this approach the values of inverse quantized
values are computed in a floating point environment like C/
MATLAB and these are stored in Read Only Memory (ROM)
in the FPGA after truncation at certain precision during
conversion from floating point to fixed point The ROM
locations are then addressed accordingly and the inverse
quantized values corresponding to the quantized values are
read out.

This implementation requires just one Block RAM on
Xilinx Virtex II FPGAs.

IV. SCALEFACTOR APPLICATION
The role of the scale factor application tool in the decoder

is to calculate the value of gain from the obtained scale factor
values and to multiply the scale factor bands with
corresponding gains. The scale factors are Huffman decoded
and their actual value is decoded from their differentially
encoded values. The analytic expression for calculation of gain
from scale factor values according to ISO/IEC 13818-7 is as
follows:

 Gain = 2(0.25(SF-100)) (7)

where SF is the scale factor value of a particular scale factor
band.

A. Implementation
The expression for gain is also a non-linear relation like

that of inverse quantization. It was also observed that the scale
factor values have only integer values between 0 and 255
(included). So we resort back to the implementation strategy
used in inverse quantization tool, i.e., we calculate gain values
according to the 256 SF values in C/MATLAB and store it in a
ROM of depth 256 and desired precision.

One other thing to be noticed here is that the value of gain
becomes very large with increasing values of SF; this will lead
to a lot of truncation errors in the tools that follow. In our
decoder we found that with such high gain values, a lot of
truncation was introduced in the tools that followed and also by
the sound card of the computer and due to this a noisy output

Figure 3 Comparison between Approximated and Actual Inverse Quantized
Values

was obtained. Hence there is a need to reduce the value of gain.
So a minor change was incorporated which then removed the
noise from the output. The new expression for gain is:

Gain= 2(0.25(SF-156)) (8)

The value 156 was chosen because the maximum value of
gain was in the range of 214, and hence to make the range
between -1 and 1, the gain had to be divided by 214. On
dividing the value of gain by 214 we get the above relation.

 The implementation of this block too requires only one
Block RAM in Xilinx Virtex II implementation.

V. NOISELESS DECODING
To reduce the redundancy of the scale factors and the

quantized spectrum of each audio channel they are subjected to
noiseless coding at the encoder. The spectral data and scale
factor data for particular scale factor bands are differentially
Huffman encoded as explained in [2]. The differential offsets
are stored in 11 spectral data code books, and 1 scale factor
code book. The process of decoding switching through various
codebooks is explained in [6].

A. Implementation
We implemented the implementation strategy in [7] and

adopted a memory usage optimized implementation scheme
because the on board memory is being used up by other blocks.
If this resource is still in abundance then the implementation
algorithm choice can just be made on ease of decoding.

The algorithm would be to switch through a binary tree
depending on every incoming bit as explained in [7], when we
encounter a valid code, an index value is returned. A table
containing linking data for each of these nodes will have to be
stored in the memory. On getting the index then we can
calculate 4-tuple or 2-tuple samples depending on codebook
[2]. Evident performance enhancement could be obtained from
software simulations.

 To further improve memory usage, we can recognize that a
part of the Huffman code follows a binary pattern. Hence the
approach was to truncate the Huffman code recognition to just

the non-binary portion of the content and adding the rest of bits
as offset to get address.

VI. CONCLUSION
 We have validated the proposed methods to implement the

IMDCT filter bank, Noiseless decoder, Inverse quantiser and
Scale factor application modules of MPEG-2 Advanced Audio
Coding decoder more efficiently when implemented on Xilinx
Virtex II FPGAs. Currently, we are integrating all the decoder
tools on Xilinx Virtex II FPGAs. We also plan to try it on a
SOPC environment.

REFERENCES
[1] www.mp3-tech.org/aac.html
[2] ISO/IEC “IS 13818-7 Information Technology- Generic Coding of

Moving Pictures and Associated Audio Information - Part 7 Advanced
Audio Coding (AAC)”.

[3] H. Najafzadeh-Azghandi and P. Kabal, “Perceptual Coding of Narrow
band Audio Signals,” Proc. IEEE Conference on Acoustics, Speech,
Signal Processing , Phoenix, AZ, March 1999, pp. 913-916.

[4] Chi-Min Liu and Wen-Chieh Lee, “A Unified Fast Algorithm for Cosine
Modulated Filter Banks in Current Audio Coding Standards,” Proc. AES
104th Convention, Amsterdam, 1998, pp. 16-19.

[5] R. Linneman, “AAC on FPGA for MPEG-2,” Proc. Innovation Expo
2002.

[6] J. Kreiter , “Emerging Markets Create Demand for FPGA," Chip
Design, Mar. 2004, pp. 42.

[7] Byeong-II Kim, Tae-Gyu Chang and Jong-Hoon Jeong, “An efficient
search of binary tree for Huffman decoding based on numeric
interpretation of codewords,” Proc. ITC-CSCC2002, Thailand, 2002.

