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Abstract— This paper discusses methods to implement the 
IMDCT filter bank, Noiseless decoder, Inverse quantiser and 
Scale factor application modules of MPEG-2 Advanced Audio 
Coding decoder more efficiently when implemented on FPGAs. 
The efficiency of the algorithms has been validated through 
implementation on Xilinx Virtex II FPGAs. 

I.  INTRODUCTION 
The goal is to implement MPEG-2, Advanced Audio 

Coding (AAC) decoder efficiently on System on 
Programmable Chip (SOPC) or Field Programmable Gate 
Arrays (FPGA). 

MPEG-2 AAC is a state of art audio coding standard which 
is replacing the in vogue MP3, as portable music download 
standard.  It has better compression rates and perceptual quality 
better than CD quality audio at bit rates of 96kbps [1] as 
compared to MP3. The basic structure of the MPEG-2 AAC 
system is shown in Fig. 1. The functions of the decoder are to 
find the description of the quantized audio spectra in the bit 
stream encoded as per [2], decode the quantized values and 
other reconstruction information, and reconstruct the quantized 
spectra using tools activated by the bit stream. The signal 
spectra as described by the input bit stream, is then converted 
from frequency domain to the time domain, with or without an 
optional gain control tool. Following the initial reconstruction 
and scaling of the spectrum reconstruction, there are many 
optional tools that modify one or more of the spectra in order to 
provide more efficient decoding.  

Traditionally the design of audio decoding systems would 
be centred on a low-power, low-cost Digital Signal Processor 
(DSP) as central processing core. The general-purpose DSPs 
by definition perform relatively well over a wide range of 
applications rather than addressing special-purpose needs. The 
serial instruction stream inherent to microprocessor 
architectures limits DSP performance. 

DSPs do well in applications dominated by control flow or 
decision making but FPGAs are more suited for 
computationally intensive tasks that can be executed in parallel. 
FPGA offer flexibility and scalability in hardware. The ability 
to manipulate FPGA logic at the gate level allows designers to 
create a custom processor that can efficiently implement the 
function the application  requires and  simultaneously   perform  

Figure 1 MPEG-2 AAC Decoder Block Diagram [2] 

all application sub functions in parallel. Further, new families 
of FPGAs are integrated with lots of block memory, signal 
processing function blocks, are of low power, and are 
competitively priced, especially on a price performance scale 
[3].  

The input to the bit stream demultiplexer is the MPEG-2 
AAC bit stream. The demultiplexer separates the data stream 
into the parts for each tool. The noiseless decoding tool parses 
the bit stream, decodes the Huffman coded data and 
reconstructs the quantised spectra and the Huffman and DPCM 
coded scale factors. The inverse quantiser tool takes the 
quantised values for the spectra, and converts the integer values 
to the non-scaled, reconstructed spectra. The M/S tool converts 
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spectra pairs from Mid/Side to Left/Right under control of the 
M/S decision information in order to improve coding 
efficiency. The prediction tool reverses the prediction process 
carried out at the encoder. The intensity stereo/coupling tool 
implements intensity stereo decoding on pairs of spectra. The 
temporal noise shaping (TNS) tool implements a control of the 
fine time structure of the coding noise. The filterbank tool 
applies the inverse of the frequency mapping that was carried 
out at the encoder. An inverse modified discrete cosine 
transform (IMDCT) is used for the filterbank tool. When 
present, the gain control tool applies a separate time domain 
gain control to each of 4 frequency bands that have been 
created by the gain control filterbank in the encoder.  

This paper suggests methods for implementing the 
following four AAC decoder modules more efficiently. 

• Filterbank 

• Inverse Quantization 

• Scale factor Application 

• Noiseless Decoder 

II. FILTERBANK 
The filterbank converts the frequency-domain signals into 

time-domain signals. The encoder uses Modified Discrete 
Cosine Transform (MDCT) to convert the signals from time 
domain to the frequency domain where it is then compressed 
and transmitted. At the decoder the signals in frequency-
domain are transformed into time-domain using IMDCT. This 
is then followed by windowing and overlap addition of the 
windowed coefficients. 
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where,  n is the sample index; k is the spectral coefficient 
index; N is the window length based on window sequence 
value and  n0= (N/2 +1)/2 

A. Butterfly implementation 
Fast algorithms for implementing Discrete Cosine 

Transform (DCT) exist [4]. Implementation of IMDCT is 
almost equivalent to that of DCT-IV. 

DCT-IV(N)=A(N-1)+M(N)+DCT-IV(N/2)+DCT-III(N/2)  (2) 

where DCT-III(N) and DCT-IV(N) are the arithmetic 
complexity of the type-III and type-IV DCT with length N. 
A(x) and M(y) indicate that number of real additions and 
multiplications required are x and y, respectively [5]. Though 
this implementation reduces the number of additions and 
multiplications, it inherently comes with complexity. Study of 
previous implementations show that a straight forward 
implementation with ROMs to store the DCT and windowing 
coefficients, was more efficient. This is because the time taken 
by arithmetic operations is not the bottleneck in the 
implementation of the entire block. Another benefit from this 

approach is that the amount of logic used in the DCT i.e. the 
area occupied on the FPGA is small. Other approaches to 
calculate IMDCT faster and in a more efficient way were also 
examined. 

B. Using Fast Fourier Transform (FFT) 
A relation between IMDCT and FFT was found and this 

implementation was used to calculate IMDCT [3]. 
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Two functions were written in MATLAB to calculate 2048 
point IMDCT; first based on (1) and the second based on (4). 
On running these two functions on a Pentium 4, 2.0GHz, 512 
MB system, we obtained the following results averaged over 
10 runs.  

Time taken by first function     = 0.603 seconds 
Time taken by second function = 0.0122 seconds 

The second function is 49.426 times faster than the first 
function. 

The IMDCT module using (4) was implemented in VHDL 
using Xilinx System Generator. The implementation block 
diagram is shown in Fig. 2. The FPGA chosen was Virtex II 
XC2v2000 bf 957-6. The device utilization summary for 
Filterbank is 

No. of slices                       4075 of 10752   38% 
No. of Flip Flops                5158 of 21504   24% 
No. of 4 input LUTs           5557 of 21504   26% 
No. of Block RAMs           33 of 56            59% 
No. of 18*18 Multipliers    31 of 56            55% 

III. INVERSE QUANTIZATION 
A non uniform quantiser is used in the encoder for 

quantisation of the spectral coefficients. Therefore the decoder 
must perform the inverse non uniform quantisation  after the 
Huffman decoding of the scale factors and spectral data. The  
inverse quantization is described by 

      x_invquant = sign(x_quant) * |x_quant|4/3  (5) 

where x_invquant is the inverse quantized value, x_quant is the 
quantized value and sign(x) gives the sign of x. 



Figure 2  Simulink block diagram of Filter bank module

A. Implementation 
The expression for inverse quantization is non-linear. Fixed 

point implementation of such non-linear expressions in VHDL 
is very difficult and consumes a lot of resources like multipliers 
and takes a lot of time for calculation. So a more efficient 
method of calculation of inverse quantized values is needed. 
One approach is the use of fixed point approximations of the 
function that could be used for approximate calculations. 

An approximation using second order regression is given as 
[5] 

x_invquant = 0.04 * x_quant2 + 1.98 * x_quant -1.77 (6) 

Comparisons between actual values and these 
approximated values in Fig. 3 show that the approximations are 
valid only when the values of x_quant are small. 

A Look Up Table (LUT) based implementation was chosen 
to compute inverse quantized values of noiselessly decoded 
spectral values. In this approach the values of inverse quantized 
values are computed in a floating point environment like C/ 
MATLAB and these are stored in Read Only Memory (ROM) 
in the FPGA after truncation at certain precision during 
conversion from floating point to fixed point The ROM 
locations are then addressed accordingly and the inverse 
quantized values corresponding to the quantized values are 
read out. 

This implementation requires just one Block RAM on 
Xilinx  Virtex II FPGAs. 

IV. SCALEFACTOR APPLICATION 
The role of the scale factor application tool in the  decoder 

is to calculate the value of gain from the obtained scale factor 
values and to multiply the scale factor bands with 
corresponding gains. The scale factors are Huffman decoded 
and their actual value is decoded from their differentially 
encoded values. The analytic expression for calculation of gain 
from scale factor values according to ISO/IEC 13818-7 is as 
follows: 

 Gain = 2(0.25(SF-100))   (7) 

where SF is the scale factor value of a particular scale factor 
band. 

A. Implementation 
The expression for gain is also a non-linear relation like 

that of inverse quantization. It was also observed that the scale 
factor values have only integer values between 0 and 255 
(included). So we resort back to the implementation strategy 
used in inverse quantization tool, i.e., we calculate gain values 
according to the 256 SF values in C/MATLAB and store it in a 
ROM of depth 256 and desired precision.  

One other thing to be noticed here is that the value of gain 
becomes very large with increasing values of SF; this will lead 
to a lot of truncation errors in the tools that follow. In our 
decoder we found that with such high gain values, a lot of 
truncation was introduced in the tools that followed and also by 
the sound card of the computer and due to this a noisy output 

 



 
Figure 3 Comparison between Approximated and Actual Inverse Quantized 
Values 

was obtained. Hence there is a need to reduce the value of gain. 
So a minor change was incorporated which then removed the 
noise from the output. The new expression for gain is: 

Gain= 2(0.25(SF-156))    (8)  

The value 156 was chosen because the maximum value of 
gain was in the range of 214, and hence to make the range 
between -1 and 1, the gain had to be divided by 214. On 
dividing the value of gain by 214 we get the above relation. 

  The implementation of this block too requires only one 
Block RAM in Xilinx Virtex II implementation. 

V. NOISELESS DECODING 
To reduce the redundancy of the scale factors and the 

quantized spectrum of each audio channel they are subjected to 
noiseless coding at the encoder. The spectral data and scale 
factor data for particular scale factor bands are differentially 
Huffman encoded as explained in [2]. The differential offsets 
are stored in  11 spectral data code books, and 1 scale factor 
code book. The process of decoding switching through various 
codebooks is explained in [6]. 

A. Implementation  
We implemented the implementation strategy in [7] and 

adopted a memory usage optimized implementation scheme 
because the on board memory is being used up by other blocks. 
If this resource is still in abundance then the implementation 
algorithm choice can just be made on ease of decoding. 

The algorithm would be to switch through a binary tree 
depending on every incoming bit as explained in [7], when we 
encounter a valid code, an index value is returned. A table 
containing linking data for each of these nodes will have to be 
stored in the memory. On getting the index then we can 
calculate 4-tuple or 2-tuple samples depending on codebook 
[2]. Evident performance enhancement could be obtained from 
software simulations. 

 To further improve memory usage, we can recognize that a 
part of the Huffman code follows a binary pattern. Hence the 
approach was to truncate the Huffman code recognition to just 

the non-binary portion of the content and adding the rest of bits 
as offset to get address. 

VI. CONCLUSION 
 We have validated the proposed methods to implement the 

IMDCT filter bank, Noiseless decoder, Inverse quantiser and 
Scale factor application modules of MPEG-2 Advanced Audio 
Coding decoder more efficiently when implemented on Xilinx 
Virtex II FPGAs.  Currently, we are integrating all the decoder 
tools on Xilinx Virtex II FPGAs. We also plan to try it on a 
SOPC environment. 
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