
A Pipelined Parallel Processor to Implement MD4 Message Digest
Algorithm on Xilinx FPGA

M. Bhaskar Sherigar * A.S. Mahadevan' K. Senthil Kumar' Sumam David#

* Presently working in Armedia Labs Pvt Ltd, Bangalore ,INDIA
+ Presently working in Central Research bboratory, BEL, Bangalore, INDIA
Presently working in Karnataka Regional Engineering College, Surathkul, INDIA

ABSTRACT The paper presents a Pipelined
Parallel Processor Architecture design to
implement MD4 Message digest Algorithm
which computes the message digest or the
fingerprint of 128 bit fixed length, for any
arbitrary length of input message. The
processor implements the arithmetic, logic and
circular ship operations by Pipelined Parallel
Process. The architecture i s designed to suit the
design flexibility of the XILINX Field
Programmable Gate Arrays (FPGA). The
Processor reads the message from an extemal
RAM, 16-bit at a time and internal operations
are performed with 32-bit data. The major
advantage of the design is increased speed of
computation and minimum hardware. The
processor computes the digest with a speed
approximately three times faster than the
so f ia re version implemented in DSP
processors.

1. INTRODUCTION

In the quest for the new design alternatives
FPGAs has come out as promising one with
reduced design turn-around time. XaINX
FPGAs provide ultimate flexibility due to their
re-programmability. These devices can be re-
configured to change the logic function while
they are embedded in the system. Hardware can
be changed as easily as software.

SRAM based XILINX FPGAs has a
modular architecture, rich in registers and
powerful function generator. In the present
design Xilinx XC3090 chip is used which has
320 CLBs [8]. Each CLB consists of afive input
combinational block, two flip-flops and two
outputs.

The perimeter of conjigurable Input Output
Blocks (IOB) provides a programming intelface
between the internal logic array and the device
package pins. The interconnect resources are
programmed to form the network. The Logic
Configurable Array (LCA) functions are
established by configuration program which is
loaded into an internal, distributed array of
configuration memory cells.

Digital Signature [4] fulfil the need for
authenticity in secure communication systems.
Several schemes [4] are available for digital
signature, but has limitations in the speed of
computation or transmission bandwidth. These
requirements are met by using Hash functions
[4]. A hash function H accepts a variable size
message M as input and outputs a fixed
representation H(M) of M called message
digest. In general H(M) of M, is much smaller
than M. A digital signature may be applied to
H(M) in relatively quick fashion. i.e. H(M) is
signed rather than M. Both M and signed H(M)
may be encapsulated in another message which
may then be encrypted for secrecy

MD4 message digest algorithm [3] takes an
input of arbitrary length and produces an output
of 128-bit Fingerprint or message digest in such
a way that it is computationally infeasible to
produce two messages having the same message
digest or to produce any message having a given
pre-specified target message digest.

2. PROCESSOR ARCHITECTURE

A major concept that received considerable
attention in the design of high speed computation
is Pipelining. In order to meet the indigenous
characteristics of the message digest algorithm,
the processor utilises a Pipelined Parallel

394
1063-9667/97 $10.00 0 1997 IEEE

Processing Architecture, as shown in the
Figure. 1. The operation are performed on 32-bit
data by reading the message from an external
RAM, 16-bit at a time. The set of operations
defined by the algorithm are performed on a
block of 512-bits message.

2.1 Execution Unit

The processor functional blocks implements
Logic, Arithmetic and Circular shift operations.

VO data

32 bit bus

Figure 1. Processor Architecture

In addition, the registers store the intermediate
results and initialise the constants A, B, C and D,
as well as the magic constants for round two and
round three of the algorithm[l]. Register R1
initialises the constant B and Register R2
initialises the constants A, B, C, magic constant 1
and magic constant 2. Register R3 stores the
external message to be processed by reading 16-
bits data twice conesponding to a single word of
32 bit length. All Registers are 32-bit wide in
length.

A multiplexer with output Register, Selects
and stores the contents from R3 or from the
adder. The arithmetic unit performs, addition of
two 32-bit words by using a cascaded carry look
ahead adder (CLA) of four bits forming a
sequential adder of eight stages. This reduces the
delay in propagation of carry from LSB to MSB.

The Logic unit performs three auxiliary
functions defined by the algorithm given by

f (x , y, 2) = xy v (-lx)z
g (x, y, z) = xy v x z v yz
h (x, y, z) = x CI3 y 8 z

Figure 2. Sequence of Operations

The functions f (x, y, z), g (x, y, z), h(x,
y, z) are performed in round one, round two and
round three respectively. A multiplexer at the
output stage selects any one function and stores
the result in output register LUR.

A sequential shifter, circularly shifts left in
round one two and three with different shift
counts. The number of the shifts are given by the
algorithm. It is different for each step in all the
three rounds.

The operations performed according to the
algorithm are shown in Figure. 2. The constants
A, B, C and D are initialised during the
initialisation round. Simaltaneously the constants
are stored in the external RAM for further
processing in the final round. The addition of the
constants and the result of the third round
operations are performed in final round which
may be the required message digest or may be
partial result. This partial result forms the
constants for the next 512 bits message. Round
one , two and three corresponds to the rounds
mentioned in the algorithm.

2.2 Control Unit

The control unit generates timing signals as
shown in the Figure 3, it is a hardwired control

4 3 - 5

Figure 3. Control Unit

c l
c2

c22
3

395

Figure 4. State diagram of Master Counter

unit. A MOD 22 master counter is decoded to
generate the control signals in control logic unit.
Three counters shift counter, shift sequence
counter and round counter keeps the track of the
operations taking place from initial round to the
final round. The sequence of the operations are
controlled by the sequence control logic
depending on the status condition of the shift
counter, shift sequence counter and round
counters. The state diagram of the control unit is
as shown in Figure 4.

The state diagram of the control unit is split
into four state diagrams which reduces the
complexity of the control unit without affecting
the hardware requirements. These state machines
corresponds to shift ,shift sequence and round
counters along with master counter. The outputs
of these counters are denoted as SF& ,SFS@
3,and RCW respectively.

An address generator points the memory
address from which the next data is to be read.
There are six address lines which carries the
address of the data to be read or stored. The
initial constants are read in final round. The data
read is in sequential order from consecutive
memory locations for round one where as for
round two and round three the data read is not in
regular fashion. The number of shifts in each
step repeats with a regular fashion.

3. PIPELINED OPERATIONS

Three operations are Pipelined and
processed independently and Simaltaneously as
shown in the Figure 5. In addition to this,
initialisation of the magic constants for round

Figure 4. (cntd..) Control unit state diagram
(a) Shift counter
(b) Shift sequence counter
(c) Round counter

396

two and round three and reading the message
from the external RAM is done Simaltaneously.

3.2 First Round Operations

Logic
UP umt LU

-? f(X.Y,Z) -?
g(x.y,z)
h(x,y.z)

I

I Arithmetic Circular

S F b unit shiners
-c a=a+f(x,y,z) + + s=s<<n +

+x[i]+
mc <<s

performed in round one. There are 16 steps in
this round and each step is dependent on the
previous result. Circular shift operation of each
step is performed in the next step parallely during

I I
clock

MUX+LUR;
LUR c R2: r __"

Figure 5. Pipelined Process

3.1 Initial Round Operations

First step is to initialise the constants A, B, C
and D. Second step is to store these constants in
memory. These values are retrieved at the final
round to perform the addition. The first step is
performed only once in the computation of the
message digest, but second step is repeated for a
block of every 512 bits data. The flow chart of
initial round is shown Figure 6.

[-I

I S t AC t LUR t R2 ;
R2 c C ; R1 t B; ADRS =30 I

+
M[m] t LUR[L]

A

~ADRS t ADRS+I I

SFC t SFC+l; ADRS=ADRS+I

/\.Yes R D t R D + l

GotoRound I

Figure 6. Initial Round Operations

the delay.

From Initial round

n 4 . Xi=O c
1

-j

R3[H] t M[Xi]

ADRS t A D R S + l MUX t R3; I IADRS yADRS+

I * 1

S t S < < I ; I
ADRS t A D R S + l

LUR t f(x,y,z);
MUX t AC;
R3[Hl t M[Xi] ;

Figure 7. First Round Operations

397

3.3 Second Round Operations

The second round operations are similar to
the first round operations except for Magic
constant, shift count and the sequence in which
the message blocks are read. The message is read
in a fixed irregular fashion. Flow chart of second
round is shown in Figure 8. A typical operation
taking place in this round is given below.

,

R C t R C + l

1
Figure 8. Second Round Operations

A = A + g (B, C, D) + X[i] + MCl<<< s
A,B,C, D 4 Register contents at each step which
are the intermediate results.
X[i] 4 Message block,
MC1= 5A 82 79 99 +Magic constant.

3.4 Third Round Operations

The sequence of operations taking place in
third round are same as round two except for the
memory contents read, the Magic constant MC2=
6E D9 EB A1[3] and the shift sequence. The
flow chart is same as round two operations.

3.5 Final Round Operations

At the end of round three the end result is
added to the initial constants stored in external
RAM. This operation may be the last operation

From Third Round

AC t LUR

MUX t R3
ADRS c ADRS+I

AC t LUR + MUX
ADRS t ADRS+I
SFC t SFC+1

RC=RC+I LzJ
Figure 9. Final Round Operations

or may be of any intermediate part. The result
after addition thus may be the Digest or the
initial constants for next set of operations. Row
chart in Figure 9, depicts the sequence of the
operations.

398

4. SIMULATION RESULT

A Pipelined parallel processor architecture is
designed and the design is implemented on
XILINX XC3090PG175-125 FPGA chip. The
processor assumes that the padding the message
as defined by the algorithm is done externally
and is available at RAM. The design is simulated
and the Processor works with a frequency of 6.67
MHz. It takes 94.07 microseconds to compute
the digest for the message block of 512-bits with
the chip having a speed grade of 125[8]. The
speed of operation of the present design is almost
three times faster than the implementation of the
algorithm on DSP Processor, The ADSP 2101
processors takes 260 ps to compute the digest for
512 bits message block with a clock period of 50
ns.

The specification of the processor is
summarised below.

H Frequency of operation 6.67 MHz
4 FPGAICused XC309OPG175
4 Number of IOBs used 42
H Number of CLBs used 252
E Number of address lines 06
4 Number of data lines 32(externall6)

SOFTWARE TOOLS USED

4 Designentry FutureNet
4 Design interface XILINX XDM/XACT
4 Design verification P/C SILOS

5. APPLICATIONS

The processor has its main application in
Crypto-Communication field. Authenticity of the
message is the prime requirement in applications
like remote banking, defence etc. Since hardware
implementation reduces the computation speed
the software can be totally replaced by the
processor which has simple interfacing and low
cost. The message digest can be signed and
appended to the original message before
encryption for secrecy.

6. DISCUSSION & CONCLUSION

The processor is designed to meet the goals
of the MD4 Message Digest Algorithm, utilising
the design flexibility of the Xilinx FPGAs
adapting a Pipelined architecture to achieve

higher computation speed. The Execution unit
consumes the major part of the hardware
totalling of 148 CLBs and control unit consumes
104 CLBs. The control unit is simplified by state
splitting technique. In the design a cascaded
cany look ahead adder is used which consumes
more hardware but delay is reduced by
75%compared to the sequential adder which
consumes only 32 CLBs. If delay is not
important then sequential adder is preferred.
Another unit where time delay can be reduced is
the Circular Shifter. A better choice would be a
barrel shifter if hardware is not a constraint for
reduced delay designs. The architecture can be
modified to achieve more parallelism but the
routing congestion will increase. The frequency
of the operation can be increased by
implementing the design in Xilinx 4000 series
devices. An ASIC based on this design would
give optimum performance, because a FPGA has
general architecture.

7. ACKNOWLEDGEMENT

We are grateful to Mr. H. Ramakrishna
Chief Scientist and Mr. Sethuraman Fellow at
CRL-BEL for the exchange of ideas and
discussion. We wish to thank the staff members
at CRL-BEL, K.R.E.C., Surathkal, V.V.N.
Sudhakar Reddy at CRL and Armedia Labs
Bangalore for their support.

8. REFERENCES

[l]. FutureNet Schematic Designer Data YO
Corporation, Washington.
121. PIC SILOS Logic Simulator User Manwl
SIMUCAD Incorporation, California.
[3]. Revest R.L The MD4 Message Digest
Algorithm, Lecture notes in Computer Science,
Advances in Cryptography CRYPT0 ‘90.
[4]. Simmons G.J Contemporary Cryptography the
science of information integrity IEEE Press, New
York 1991.
[5]. XILINX User guide and Turorials Xilinx
Incorporation, California.
[6]. XACT 200013000 Programmable Gate Array
Development System, Xilinx Incorporation,
California.
[7]. XACT Design Interjiace User Guide Xilinx
Incorporation, California.
[8]. Xilinx Programmable Lugic Data Book Xilinx
Incorporation, Califomia. H

399

