Real time implementation of OGG VORBIS
decoder on Analog Devices SHARC ADSP-21364

Sanjay Rajashekar, Ashish Shenoy P., Siddhartha Sampath, Akella Karthik and Dr. Sumam David S.
Department of Electronics & Communication Engineering
National Institute of Technology Karnataka, Surathkal, Mangalore 575025 INDIA
Email: sumam@ieee.org

Abstract—A real-time implementation of Ogg Vorbis audio
decoder using Analog Devices SHARC ADSP-21364 processor
is presented in this paper. The ADSP-21364 is a floating-point
processor optimized for professional audio applications. We
exploit the architectural features of this processor to implement
the decoder using floating point arithmetic. Since the SHARC
ADSP-21364 processor poses stringent memory constraints for
the dynamic probability models used in Ogg Vorbis, a technique
for significantly reducing memory requirement is presented.
Compressed-array-representations of tree structures are used
to reduce the execution time of the critical section of the
code. This is one of the early implementations of floating point
Ogg Vorbis decoder on the SHARC ADSP-21364 processor.
Our implementation at 80 MIPS provides the basis for the
development of an Ogg player capable of playing Ogg Vorbis
audio files in real-time.

I. INTRODUCTION

The Ogg Vorbis [1] [2] is a fully open, non-proprietary,
patent-and-royalty-free, general-purpose compressed audio
format for mid to high quality (8kHz-48.0kHz, 16+ bit,
polyphonic) audio and music at fixed and variable bit rates,
from 16 to 128 kbps/channel. This places Vorbis in the same
competitive class as audio representations such as MPEG-4
(AAC), and similar to, but higher performance than MP3,
TwinVQ, WMA and PAC. It has clear advantage over other
lossy codecs in that it produces smaller files than most other
codecs at equivalent or higher quality. Vorbis is the first of
a planned family of Ogg multimedia coding formats being
developed as part of Xiph.org Foundation’s Ogg multimedia
project. The latest official version is 1.2.0 released on 25 July
2007.

The term Ogg refers to a general purpose data container
format. Ogg container format encapsulates Vorbis-encoded
audio data. Hence the name Ogg Vorbis. Ogg uses octet vectors
of raw, compressed data (packets). These compressed packets
do not have any high-level structure or boundary information;
strung together, they appear to be streams of random bytes
with no landmarks. But the structure in these data packets is
implicit and is based on certain fields in the Ogg page header.

Vorbis I is a forward-adaptive monolithic transform codec
based on the Modified Discrete Cosine Transform. The codec
is structured to allow addition of a hybrid wavelet filterbank
in Vorbis II to offer better transient response and reproduction
using a transform better suited to localized time events. The
Vorbis codec design assumes a complex, psycho acoustically-
aware encoder and simple, low-complexity decoder. Vorbis

decoding is computationally simpler than MP3, although it
does require more working memory as Vorbis has a dynamic
probability model [2]. The probability model is dynamic in
the sense that a particular distribution is decided based on the
audio content in that particular frame of data. There are many
such models for an audio file, each frame being associated
with a model. The larger the number of statistically different
frames of data, larger will be the number of models used.
Naturally, the information regarding these models have to be
coded and sent along with the compressed audio data. Usage of
dynamic probability model results in relatively better decoded
audio quality, but requires larger working memory. This is
because the coded information regarding these models has
to be decoded during codec setup phase, stored in the heap,
and referred to during audio decode phase. This makes the
implementation of the Ogg Vorbis decoder on an embedded
platform a challenging task.

Real-time decoding of Ogg Vorbis using fixed point arith-
metic using specific hardware Line spectrum pair module
along with ARM7TDMI processor [3], Texas Instruments
TMS320C6416 using Altera Stratix II FPGA as hardware ac-
celerator [4], Texas Instruments TMS320C5510 and Motorola
56002 have been tried using the Tremor fixed point reference
code [5]. This work attempts to implement Ogg Vorbis decoder
using floating point arithmetic using ADSP-21364 processor
in a memory contrained environment.

Section II explains the principle of Ogg and Vorbis decod-
ing. Section III discusses issues in migration from the available
reference implementation to the real-time implementation on
ADSP-21364, along with an optimised Huffmann tree repre-
sentation. The experimental and resource utilisation results are
presented in Section IV.

II. OGG AND VORBIS DECODING

Ogg and Vorbis are two separate entities. Vorbis is the codec
which accepts PCM audio samples and outputs compressed
audio packets. It also generates data packets for codec initial-
ization. Ogg is a general purpose container format for any kind
of data. It provides framing, synchronization, error detection
and sync recovery. Decoding Vorbis embedded in Ogg is a
three-step process as shown in Fig. 1. Synchronization and
streaming layers deal with Ogg decoding. The output of the
streaming layer is a reconstructed Vorbis packet which is fed
to the Vorbis decode engine to obtain PCM audio data.

Dgg Data In

J

Synchronization Layer Decoding

L

Streaming Layer Decoding

L

Yorbis Decode Engine

<

FCh Data Out

Fig. 1. The decoding layers involved in decoding an Ogg file

Vorbis decoding takes place in two phases - the codec setup
phase and the audio decode phase. The first few packets, called
headers, contain information necessary for codec setup. Once
the codec is setup, decode of audio packets can begin. The
headers, in the correct order of occurrence, are as follows:
1) Identification header is used to identify bit stream,
Vorbis version, sample rate and number of channels

2) Comment header includes user text comments and a
vendor string for the application/library that produced
the bit stream

3) Setup header includes extensive codec setup information

as well as the complete VQ and Huffman codebooks
needed for decoding.

These headers are usually encapsulated in the first couple
of Ogg pages. The Ogg pages that follow contain the audio
packets. If the audio packet arrives before codec setup is
complete it renders the stream undecodable. The algorithm
for audio packet decode is given below [2].

1) Decode packet type flag and mode number

2) Decode window shape (long windows only)

3) Decode floor. Decode residue into residue vectors

4) Generate floor curve from decoded floor data

5) Compute dot product of floor and residue, producing

audio spectrum vector

6) Inverse monolithic transform of audio spectrum vector,

always an MDCT in Vorbis I

7) Overlap/add left-hand output of transform with right-

hand output of previous frame

8) Store right hand-data from transform of current frame

for future lapping

9) If not first frame, return results of overlap/add as audio

result of current frame

III. IMPLEMENTATION

The Ogg-Vorbis decoder is implemented on ADSP-21364
EZ-KIT [6]. The floating point reference code [7] is very
generic in nature. Removal of functional redundancy of this
decoder is necessary for the entire program to be accommodat-
ed in the program memory section (seg_pmco) of the processor

[8]. A direct implementation on the processor causes runtime
errors due to heap overflow. The default heap size allocated on
ADSP-21364 is 0.5 Mbits [8], whereas the dynamic memory
requirement estimate for the reference decoder is 2.8 Mbits.

SHARC processors have 32 bit internal memory architecture
[9]. Data types like char, short and double are all treated as
32 bit wide data types. If a byte is stored in a 32 bit location
the higher 24 bits remain vacant, hence wasted. The reference
decoder assumes byte addressable memory and allocates heap
space for byte arrays resulting in wastage of 75% of byte-
allocated memory. Naturally, byte packing - which obtains
byte addressability in word addressable memory - is a solution.
It is obtained by changing all byte pointers to custom structure
pointers. This structure contains two fields - first, the word
address of the 32 bit location in which the byte is present and
second, the position of the byte in that particular word. A set
of ‘wrapper’ functions for byte read/write and byte-address
change provide the necessary shift from word addressability
to byte addressability. Although byte packing reduces the heap
requirement, it does not completely satisfy the requirements
of the reference decoder. The ADSP-21364 has 3 Mbits of
memory split into four memory banks - two 1 Mbit banks and
two 0.5 Mbit banks [9]. The heap is located in the 1 Mbit
memory bank so the single heap size can be increased to a
maximum of 1 Mbits using the Linker Description File (LDF)
[10], [8]. Byte packing does not reduce the heap requirement
below 1 Mbits.

The codec setup phase of Vorbis decoding is memory con-
strained whereas the audio decode phase is time constrained.
Hence a trade-off exists between the memory and execution
time (MIPS). The memory requirements can be reduced at the
cost of increasing the MIPS count of the decoder. Since ADSP-
21364 can operate at a maximum of 333 MHz, it provides
enough room for increasing the MIPS count while reducing
heap requirements [11].

Vorbis uses a codebook read in vector context [2]. In the
reference implementation, the vector tables are built and saved
in the heap during codec setup. The heap memory requirement
can be reduced by building the vector tables in the real time
audio decode loop instead of the codec setup (initialization)
phase. In this approach the required vector tables are built in
the audio decode phase and the memory is freed immediately.
This results in a reduction in the memory requirements of the
floating point decoder with file input-output (I0), enabling it to
be implemented on the ADSP-21364 without multiple heaps.

A. Real-time decoding

Real time implementation requires a systematic removal of
file IO functions and introduction of IO buffers in the reference
code. One input buffer and two output buffers are used. The
DMA is used for data transfer between the IO buffers in the
processor’s internal memory and the external peripherals on
the EZ-KIT Lite board. The real time implementation uses
the AD1835A codec and the 1 MB parallel flash memory on
the kit [6]. The flash memory has to be loaded with Ogg data

before decoding can begin. The codec chip contains stereo
DACs which convert PCM data to analog audio.

The parallel port DMA (PPDMA) is associated with the
input buffer and the serial port DMA (SPORT) with the two
output buffers. The PPDMA reads Ogg data from the flash
and writes it into the input buffer. The data in the input buffer
is decoded and written into the output buffers in a ping-pong
fashion. The ping-pong buffer system involves two buffers, A
and B, initialized in internal memory. When the serial port
(SPORT), which performs the DMA transfer to AD1835A, is
reading from buffer A the decode engine should write into
buffer B and vice versa. The reading of the audio samples
should be slower than the writing of the audio samples to the
buffer for the application to be executed in real-time. If this
condition is not satisfied then the SPORT routes out old data
repeatedly and it appears as if the audio is being played with
bursts of repetition. If the writing of the audio samples to the
output buffer A is faster than the reading of the samples from
the buffer B, then the decode engine has to wait (execute NOP
or run another application in case of multitasking) until the
reading of buffer B is complete. Once the reading is complete
and SPORT starts reading buffer A, and the decode engine
starts writing the audio samples into the buffer B.

Care should be taken to map the output buffers optimally
to the memory banks as multiple memory banks in ADSP-
21364 can be accessed in parallel using the multiple buses [9]
and allocation of two frequently accessed sections to the same
memory bank results in processor pipeline stalls. Hence the
output buffers should be placed in a memory bank which does
not contain the program memory section or the regular heap
section.

B. Efficient Huffman tree representation

During the setup phase the Huffman trees are to be built
using the codebooks as shown in Fig.2. Huffman trees are
to be built offline for each of the codebooks and stored in
the heap. A Huffman tree is different from a normal binary
tree as only the leaf nodes contain values and the non-leaf
nodes contain only the child addresses. A data structure, for
a node of the tree, having three fields - value, left child
addpress, right child address would result in very high memory
requirements, as a minimum of three 32-bit words have to be
allocated for each node. Therefore, for efficient decoding, a
low memory representation of the Huffman tree is needed - a
data structure that provides all the properties of the tree, and
yet consumes considerably less space as compared to the tra-
ditional representation. A Compressed-Array-Representation
(CAR) of the tree as shown in Fig.3 provides a viable solution.
Fig.3 shows the logical and physical representation of the
CAR. By performing inorder traversal of the logical tree (i.e.
parent - left child - right child at each node recursively) and
placing the nodes in the array in the same order as they were
traversed (a, b, d, e, j, I, m, k ---) we obtain compressed
array representation. Every node in a tree is a 32-bit integer.
For the non-leaf nodes, the higher 16 bits contain the left
child address and the lower 16 bits contain the right child

0 01 of 1 5
F1r1 s 7
1 23 4
Fig. 2. A Huffman tree

k n o [
I T e

32 bit word having MSB set to 0 to distinguish
from leaf node and having 2 fields:

The left 16 bits store the index of the left child
The right 16 bits store the index of the right
child

Leaf node: Indicated by the MSB being set
to 1. The remaining 31 bits store the entry
number.

[,

Fig. 3. Efficient CAR representation

address. The leaf nodes contain a 31 bit value in the lower
31 bits and a 1 bit leaf-node marker in the most significant
bit position. This representation is suitable because normally
the trees never overflow the 15 bit index space available and
hence can handle trees with less than 2'° nodes. In the case
of Ogg Vorbis floating point decoder, the tree depth was well
within the range.

IV. RESULTS

The Ogg-Vorbis decoder is successfully implemented on
ADSP-21364 EZ-KIT by optimising the memory usage and
computational requirements and the results obtained are
promising. Byte packing in synchronization layers resulted in
reduction in heap usage by 4000 words. Byte packing in the
streaming layer resulted in an additional reduction of 2000
words. Hence the total reduction in heap usage through byte
packing is around 6000 words. Shifting the vector table decode
from the setup phase to the real time decode loop results in
reduction of the required heap memory to about 0.7 Mbits.
The memory utilization of different sections is given below.

e 73% of 1 Mbits heap space in Block-1 RAM
¢ 33% of 0.25 Mbits stack space in Block-3 RAM
e 55% of 0.67 Mbits program space in Block-0 RAM

Ezecution Unit
read_scalar_context()
20.47% write buffer()
2.97% oggpack_read()
734 incr_ptr()
73% incr_ptr_getbyte(DATA PTR, int)
49% huffnan_codes()
48% divsil

Histogram =

[] 59.82%
[

|

\

\

\

\

\

\

237 post_window()

19% read vector context(float=)

05% residus_curve decode(vorbiz_info*, int, vorbis decode®. ..
91% _ modsid

66X _ float_divide

51% mdct_backward()

E0% float32_unpack()

48% putbhyte()

48% incr_ptr_putbyte(DaTa PTR, int, char)

e = == It S S Py S

Fig. 4. The results of statistical profiling using linear search for traversing
huffman trees

Histogram % Emecution Unit
12 .56% oggpack_read{)
11.80% incr_ptr()

@

63% | inorder()

14% read_scalar context()

72% incr_ptr_getbyte(DATA PTR, int)

45% write_buifer()

25% _ divsid

04% read vector context({float*)

56% post_windowi)

29% residue_curve_decode(vorbis_info¥, int, vorbis_decodex
87%| _ mod=si3

88% __ float_divide

14% putbytel)

12% incr_ptr_putbyts(DATA PTR, int, char)
11% float32_unpachk()

80% mdct_backward()

R T T3] R G e 211 O 0RO

Fig. 5. The results of statistical profiling after using the CAR representation
for Huffman trees

e 60% of 0.5 Mbits data memory in Block-2 RAM

Initially the decoder required about 290 MIPS when ported
onto the processor. The computational intensity estimate for
each of the sub-routines of the real time decoder was done
using the VDSP++ environment’s statistical profiling tool [12].
The results of profiling are shown in Fig.4

From profiling it was apparent that the function
read_scalar_context() consumed majority of the computing
time. This function traverses the huffman tree with an input
code and reads out the value of the leaf node attained. This
traversal is the critical section of the code. The Compressed
Array representation optimises this critical section by yielding
much faster traversal as the tree traversal is reduced to seeking
an index in an array. The introduction of CAR reduced the
MIPS requirement from 290 MIPS to 80 MIPS. The results
of statistical profiling after the CAR implementation is shown
in Fig.5. The output was bit exact with the output of the
reference codec implemented on Visual C++ environment. The
output audio quality for the test audio streams was good and
provides a basis for development of an Ogg-Vorbis player
using ADSP-21364. A detailed comparison of audio quality
of Ogg Vorbis with codecs like MP3, AAC etc has been
undertaken by Xiph.org foundation [13].

ACKNOWLEDGMENT

The authors gratefully acknowledge Analog Devices Uni-
versity Program and DSP Applications group, Analog Devices
India Product Development Centre, Bangalore for their support
in this work.

[1]
[2]

[3]

[4]

[3]
[6]
[7]
[8]
[9]
[10]
(1]
[12]

[13]

REFERENCES
Ogg documentation. [Online]. Available: http://www.xiph.org
Vorbis 1 specification document. [Online]. Available:
http://www.xiph.org

A.Kosaka, S.Yamaguchi, H.Okuhata, T.Onoye, and I. Shirakawa, “VLSI
implementation of ogg vorbis decoder for embedded applications,” in
Proc. IEEE ASIC/SOC Conference 2002, Sep. 25-28, 2002, pp. 20-24.
H. Karnhall, “Decoding Ogg Vorbis audio with the C6416 dsp using a
custom made MDCT core on FPGA,” Master thesis, Linkping Institute
of Technology, Sweden, 2007.
Tremor reference
http://www.xiph.org/vorbis
ADSP-21364 EZ-KIT Lite Evaluation System Manual Rev 2.0. Analog
Devices Inc, 2005.
Libvorbis reference
http://www.xiph.org/vorbis
ADSP-2136x SHARC Processor Programming Reference Rev 1.0. Ana-
log Devices Inc, 2005.

ADSP-2136x SHARC Processor Hardware Reference Rev 1.0. Analog
Devices Inc, 2005.

Understanding and Using Linker Description Files, Engineer-to-
Engineer Note EE-69. DSP Applications group, Analog Devices, 2005.
ADSP-21364 SHARC Processor Data Sheet Rev 1.0. Analog Devices
Inc, 2005.

decoder. [Online]. Available:

implementation. [Online]. Available:

VDSP++ 4.5 C/C++ Compiler and Library Manual for SHARC Pro-
cessors Rev 6.0. Analog Devices Inc, 2006.
Ogg vorbis versus other codecs. [Online]. Available:

http://www.xiph.org/vorbis/listen.html

