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Abstract—A novel method based on an algorithm by Pedersen
et. al. using independent component analysis and binary time-
frequency masking to iteratively segregate sources from a stereo
recording is proposed here to improve the quality of estimated
sources and reduce artifacts (musical noise). The inspiration
comes from research in auditory scene analysis which indicates
that the human auditory system uses a spectrogram-like time-
frequency representation with variable frequency resolution for
performing stream segregation and perceptual grouping. A time-
frequency transform with a variable frequency based on the
discrete cosine transform and amplitude modulation is suggested.
A method for perfect reconstruction and a way to exploit
short-time stationarity of the sources have also been suggested.
Simulation results indicate significant improvements in objective
evaluation criteria like percentage of energy loss and signal-
to-noise ratio improvement. Subjective listening tests indicate a
marked improvement in estimated signal quality with strongly
reduced artifacts.

I. INTRODUCTION
Blind source separation refers to the process of recovering

the original signals from mixtures observed by spatially di-
verse sensors, without any information about either the mixing
process or the source signals. Blind source separation has
application in many scenarios, the most prominent of which
involves recovering the speech of a particular speaker in a
room of multiple simultaneous and independent speakers. In
literature, this problem is known as the cocktail party problem.
In this context, the term ‘blind’ stresses the fact that neither
the mixing process nor the source signals are known. This
could arise when undertaking the modeling of the system is in-
tractable or when a priori knowledge of the mixing process is
unavailable. This lack of a priori information is compensated
by a statistically strong and physically plausible assumption of
independence of the source signals. Blind source separation is
presently quite a mature field with application in many areas of
research and even has a few textbook-length reviews [1]–[4].
In the simplest mixing model, termed as instantaneous

mixing, each recorded signal consists of a sum of differently
weighted sources. But this is too simplistic to model many
real-world scenarios, such as the cocktail-party problem which
involves recovering speech of a particular speaker in a room of
multiple simultaneous and independent speakers. The acous-
tics of such a room environment cannot be modeled as a simple
instantaneous weighted mixture due to the presence of multi-
path propagation and reverberations since here the mixtures are

weighted and delayed. Such filtered sums of different sources
are called convolutive mixtures.
It is typically assumed that the number of sensors is

no less than the number of sources, in which case, linear
methods are sufficient to determine the mixing process. When
the number of sensors exceeds the number of sources, the
problem is called overdetermined,when it is equal it is called
fully-determined otherwise it is called underdetermined (or
overcomplete). The fully determined and overdetermined cases
have been extensively studied by researchers over the past
decade [5]. However, the underdetermined case has proven to
be much more challenging and has received lesser attention.
In the underdetermined case, linear methods are insufficient
to recover the sources, even with the perfect knowledge of
the mixing process [5]. In other words, the sources cannot be
estimated completely as information is lost during the mixing
process. Additional assumptions are needed to estimate the
source signals. Our aim is to use novel ideas inspired from
auditory scene analysis to improve underdetermined blind
source separation algorithms. We have achieved significant
improvements in objective evaluation criteria such as the
percentage of energy loss and signal-to-noise ratio improve-
ment. Subjective listening tests have shown that our method
generates estimated sources with lesser noise and artifacts and
slightly reduced interference.
Auditory scene analysis (ASA) is the process by which the

human auditory system organizes complex mixtures of sound
[6]. Human audition is surprisingly complex and intricate. For
example, when we listen to an orchestra, we perceive music
as a whole rather than hearing many individual instruments
being played simultaneously. This is an example of perceptual
grouping. On the other hand, in the cocktail party scenario,
when there are many speakers around us in a room, we are still
able to carry on a conversation with relative ease. This is an
example of stream segregation. Computational auditory scene
analysis (CASA) is the study of auditory scene analysis by
computational means. In essence, CASA systems are machine
listening systems that aim to separate mixtures of sound
sources in the same way that human listeners do.

Related work and Contributions
Researchers have used various assumptions about source

locations, distributions and other parameters to solve the un-
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derdetermined blind source separation problem. For example,
sparsity in time, frequency or time-frequency domain may be
assumed [7]. However, if there is an overlap, then binary time-
frequency masking can be used to achieve good separation [8].
Time-frequency masking also has often been used in compu-
tational auditory scene analysis [9]. Pedersen et. al. [10]–[12]
have utilized independent component analysis (ICA) and bi-
nary time frequency masking to devise an iterative algorithm to
perform underdetermined blind source separation. We propose
a method based on this approach for instantaneous mixtures
which uses a time-frequency (T-F) transform having variable
frequency resolution inspired from the human auditory system.
Discrete cosine transform and amplitude modulation are used
to generate a time-frequency transform with variable frequency
resolution. Also, a method for perfect signal reconstruction and
a way to exploit short time stationarity have been suggested.
The organization of the paper is as follows: we first present

a brief discussion of general blind source separation principles,
after which an overview of the method due to Pedersen et. al.
is reviewed. Next, an novel method using a time-frequency
transform with variable frequency resolution achieved using
the discrete cosine transform and amplitude modulation along
with a method for perfect signal reconstruction and a way
to exploit short time stationarity are suggested. Results of
simulations comparing our method with the original Peder-
sen’s algorithm are then presented and finally, conclusions are
drawn.

II. BASIC PRINCIPLES OF BLIND SOURCE SEPARATION
The general generative blind source separation model,

called the convolutive mixing model, can be described as
follows: At the discrete time index t, a mixture of N sta-
tistically independent sources s(t) = [s1(t), . . . , sN (t)]T is
assumed to be recorded at M spatially diverse sensors. The
M real, zero-mean sensor signals in vector form x(t) =
[x1(t), . . . , xM (t)]T are linear mixtures of filtered versions of
each of the source signals, along with some additive sensor
noise in vector form v(t) = [v1(t), . . . , vM (t)]T . Each sensor
signal can be represented as

xm(t) =

N∑
n=1

K−1∑
k=0

amnksn(t− k) + vm(t) m = 1, . . . , M

(1)
where amnk represents the mixing filter coefficient. In theory,
the mixing filters may be of infinite length (implemented as IIR
systems), however, in practice it is sufficient to assume channel
length K < ∞ due to the nature of the in-room acoustic
environment. In matrix form, the convolutive model can be
written as

x(t) =
K−1∑
k=0

Aks(t− k) + v(t) (2)

where Ak is anM×N matrix which contains the k-th mixing
filter coefficients.
Assuming a noise-free scenario with all the signals arriving

at the sensors at the same instant without undergoing any

filtering, the convolutive model in (2) simplifies to

x(t) = As(t) (3)

which is the instantaneous mixing model. Here A = A0 is an
M ×N matrix containing the mixing coefficients.
The crux of solving the blind source separation problem is in

estimating both s(t) andA given only the mixtures x(t). Basic
independent component analysis (ICA) algorithms assume the
instantaneous mixing model and work quite effectively in
performing the separation. It is done by first estimating the
mixing matrix A and then computing its inverse W. The
estimated original sources y(t) are then computed using

y(t) = Wx(t) (4)

Separation based on the convolutive mixing model is much
more complex and difficult as the unmixing filter W must
first be estimated after which the sources can be estimated as

y(t) =

L−1∑
l=0

Wlx(t− l) (5)

III. OVERVIEW OF UNDER-DETERMINED BLIND SOURCE
SEPARATION USING BINARY T-F MASKING

Pedersen et. al. use the output of a 2 × 2 ICA algorithm
and binary time-frequency masking to separate stereo mixtures
having an unknown number of sources [10]–[12]. A knowl-
edge about the source geometry and a degree of sparsity, either
in spatial, temporal or time-frequency domain is assumed.
Time-frequency binary masking has the advantage that only
binary decisions have to be made. It is an iterative procedure
that runs until all the source signals are estimated. The results
are improved by grouping similar signals. This algorithm has
the advantage that it does not require previous knowledge of
the number of sources in a stereo mixture. The algorithm
has three stages: a core procedure, a separation stage and
a merging stage. The inputs the algorithm are the two mixed
signals x1(t) and x2(t) of duration Ns.

A. Core Procedure
The core procedure accepts a binary mask BM(ω, t) and

two mixed signals xa and xb as input. For the initial iteration,
these inputs are the stereo mixture x1(t) and x2(t) and the
binary mask BM(ω, t) = 1, ∀ ω, t. These two signals are
separated into two independent components y1 and y2 by
a 2 × 2 ICA algorithm. The scaling ambiguity of the ICA
algorithm is overcome by normalizing y1 and y2 to get ŷ1

and ŷ2 respectively. These are then transformed into the T-F
domain using the short-time Fourier transform (STFT) to get
the two spectrograms,

ŷ1 −→ Y1(ω, t) (6)

ŷ2 −→ Y2(ω, t) (7)

where ω is the frequency bin and t is the time window index.
Two binary masks BM1(ω, t) and BM2(ω, t) are estimated
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by comparing the magnitudes of the two spectrograms at each
T-F unit using

BM1(ω, t) =

{
BM(ω, t), if |Y1(ω, t)| > τ |Y2(ω, t)|
0, if |Y2(ω, t)| > τ |Y1(ω, t)|

∀ ω, t

(8)

BM2(ω, t) =

{
BM(ω, t), if |Y2(ω, t)| > τ |Y1(ω, t)|
0, if |Y1(ω, t)| > τ |Y2(ω, t)|

∀ ω, t

(9)
where τ is a parameter and |Y (ω, t)| denotes the magnitude
of the spectrogram Y (ω, t). The amount of interfering signal
removed at each iteration is decided by the sparsity of the mask
which is controlled by the parameter τ in 8 and 9. When τ = 1
the two estimated masks together contain the same number
of retained T-F units as the previous mask. If τ > 1, the
resulting mask is more sparse than the previous mask and the
convergence is faster. The case 0 < τ < 1 is not considered, as
some T-F units would be assigned the value 1 in both estimated
masks.
Each of these binary masks are then multiplied with the

spectrograms of the two input signals to get four output
spectrograms X1a(ω, t), X1b(ω, t), X2a(ω, t) and X2b(ω, t),
which are then transformed to the time domain using the
inverse STFT to get four time domain signals,

X1a(ω, t) −→ x1a(t) (10)
X1b(ω, t) −→ x1b(t) (11)
X2a(ω, t) −→ x2a(t) (12)
X2b(ω, t) −→ x2b(t) (13)

Thus, two binary masks and two pairs of masked output signals
are generated by each instance of the core procedure.

B. Separation Stage

The separation stage is the repeated and iterative application
of the core procedure. At the end of each instance of the
core procedure, each of the masked output signals is classified
into one of the following categories, based on the stopping
criterion:
1) The masked signal is of poor quality.
2) The masked signal consists of mainly one source signal.
3) The masked signal consists of more than one source
signal.

If the stopping criterion indicates that the mask of a signal has
too few T-F units, the signal will have many artifacts (musical
noise). It is marked as poor quality signal and stored for later
use. If the signal is in the second category, it is stored as
a candidate for a separated source signal. For the first two
categories, no further processing in the separation stage is
done. If it is the third case, further separation is done by
processing it through another instance of core procedure. After
each instance of core procedure, the masks become sparser.
This process is continued till there are no signals containing
more than one source signal.

Stopping Criterion: Consider the noisy instantaneous mix-
ing model in vector form,

x = As + v (14)

where v is the sensor noise. Assuming that the noise is
independent with variance σ2, the covariance matrix Rxx can
be written as function of the mixing matrix and the source
signals as

Rxx = E{xxT }

= AE{ssT }AT + E{vvT }

= ARssA
T + σ2I

(15)

where E{.} is the statistical expectation operation. It is
assumed that the masked sensor signal consists of a single
source if the condition number (based on the 2-norm) is greater
than a threshold τc, i.e.,

cond(Rxx) > τc (16)

A high condition number indicates that the matrix is close to
being singular. Since Rxx is symmetric and positive definite,

cond(Rxx) =
max eig(Rxx)

min eig(Rxx)
(17)

where eig(Rxx) is the vector of eigenvalues of Rxx.

C. Merging Stage
So far in this procedure, there is no guarantee that multiple

estimated masks do not result in the same source signal.
To improve the possibility of segregating all source signals
and reduce the possibility of segregating the same source
repeatedly, the merging stage is applied. Merging stage also
helps improve the quality of the separated signals.
The output of the separation stage consists of the k segre-

gated sources ŝ1, ŝ2, . . . , ŝk, the l segregated signals of poor
quality p̂1, p̂2, . . . , p̂l, and their corresponding binary masks
BMŝi

and BMp̂i
respectively. To identify whether two masks

have led to the same signal, the correlation between the signals
in the time domain is considered by computing the normalized
correlation coefficients. If the correlation coefficient is found
to be greater than some threshold τC1, a new binary mask is
created by applying the logical OR operation to the two masks
associated with the two correlated signals. Now a new signal
is generated using this new binary mask. This step reduces the
total number of signals containing segregated sources. Next,
the poor quality signals are used to improve the segregated
source estimates. The normalized correlation coefficients be-
tween the poor quality signals and signals having one source
are computed. If it is found to be greater than some threshold
τC2, then the binary mask of the poor quality signal is merged
with that of the signal containing one source by applying the
logical OR operation. The new mask will be less sparse and
thus is expected to improve the quality of the estimated source.
There is a possibility that some of the original sources in

the mixture have not been assigned to one of the segregated
sources ŝi. The T-F units containing these unassigned sources
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are assigned to a background mask. The background mask is
computed by

BGM = BMŝ1
∨BMŝ2

∨ · · · ∨BMŝN
(18)

This background mask is applied to the original stereo mixture
to remove these sources. The new signals now generated are
fed into the separation stage and the process is repeated. This is
continued till the background mask generated does not change
from the background mask of the previous iteration.

IV. PROPOSED METHOD FOR UNDERDETERMINED BLIND
SOURCE SEPARATION

A. Discrete Cosine Transform with Amplitude Modulation
Research in Auditory Scene Analysis (ASA) and human

audition have given us much insight into the way humans
quite successfully perform source separation in the cocktail
party scenario. It is now known that a long coiled ribbon-
like structure called the basilar membrane is present in the
inner ear and is responsible for converting the acoustic energy
into specific neural signals [6]. Different segments of this
structure resonate at different frequencies and thus activate
nerves near them only if the sound has frequency components
near its resonant frequency. The amplitude of oscillation is
also indicative of the magnitude of that particular frequency
component. This suggests that the brain gets information
in the T-F domain similar to a spectrogram. Research on
perceptual grouping effects and stream segregation indicate
that the separability of two tones is directly related to how
far they are separated in the frequency domain, but on a
logarithmic scale [6]. It has also been found that frequency
resolution of the basilar membrane is logarithmic-like. i.e.,
the frequency resolution at higher frequencies is lower than
the frequency resolution at lower frequencies [6].
This information indicates that a T-F transformation with

such a variable frequency resolution may perform better
than using the STFT. The discrete cosine transform (DCT)
has a strong energy compaction property and expands high
frequencies and compresses low frequencies [13]. This is
exactly opposite of what we are aiming to achieve. To counter
this, amplitude modulation (AM) is performed on the stereo
mixtures so that the spectra of the input signals are reversed.
Now, when these signals are transformed to the T-F domain
using short time DCT, the frequency components originally
at the lower end of the spectrum are expanded and the
components originally at the higher end are compressed. This
results in a frequency resolution that is similar to the human
auditory system in that the resolution at higher frequencies is
lower than that at lower frequencies of the input signals. After
the computations in the T-F domain, amplitude modulation is
again performed to recover the signals. However, computing
the DCT takes about twice as long as the STFT as the DCT
is not symmetrical.

B. Method for Perfect Signal Reconstruction
When computing the transform from the time domain to

the time-frequency domain, a STFT with rectangular window

and no overlap between successive blocks of data is used.
Overlapping is not used because when transforming the signal
from the T-F domain back to the time domain, it leads to
problems as there is no longer a one-one correspondence
between the blocks in the time and T-F domains.
However, if overlapping between successive blocks is used,

it may reduce the amount of artifacts in the resulting estimates
source signals. To achieve a 75% overlap between successive
blocks, each block is multiplied with the absolute value of
a sinusoid having a period equal to the block length (say T)
before applying the frequency transform. After the necessary
computations are performed in the T-F domain, each block is
transformed back to the time domain and again multiplied with
the absolute value of the sinusoid used earlier. Any quarter of a
block in the original signal is now present in four consecutive
blocks. These may be added to get a scaled version of the
original signal. If xi is an element in a quarter of a block in
the original signal, it is multiplied by | sin(θ)|, | sin(θ + π

2
)|,

| sin(θ + π)| and | sin(θ + 3π
2

)| respectively over four blocks.
It is again multiplied by the same factors on returning to the
time domain. Thus, when they are added we get

xi.
(
| sin(θ)|2 + | sin(θ +

π

2
)|2 + | sin(θ + π)|2

+ | sin(θ +
3π

2
)|2

)
= xi.

(
2 sin2(θ) + 2 cos2(θ))

= 2xi

(19)

Thus, this procedure allows for perfect signal reconstruction
after using overlapping windows for the T-F transform.

C. Temporal Mask Continuity
It can be assumed that the mask contents will not change

significantly between consecutive blocks as the time duration
of the step size from one block to the next is very small (of
the order of 0.05s). This short range temporal stationarity is
accounted when calculating the masks of any particular block
by adding attenuated values of the nearby masks.

V. RESULTS
A. Evaluation criteria
It is not possible to perfectly reconstruct the signals after

separation using binary masks as the signals overlap. Hence,
the concept of an ideal mask has been suggested as a suitable
computational goal for separation [14]. The ideal binary mask
for a signal is found for each T-F unit by comparing the
energy of the signal to the energy of all the interfering signals.
Whenever the signal energy is higher within a T-F unit, the
T-F unit is assigned the value 1 and whenever the combined
interfering signals have more energy, the T-F unit is assigned
the value 0.
We use improvement in signal-to-noise ratio (SNR) in dB

(ΔSNR), percentage of energy loss (PEL) and the percentage
of noise residue (PNR) as the objective performance measures.
Improvement in SNR is defined as

ΔSNR = SNRo − SNRi (20)
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(a) Mask outputs for Source1 (b) Mask outputs for Source2 (c) Mask outputs for Source3

Fig. 1. Typical binary mask outputs for a simulation with 3 sources

TABLE I
SIMULATION RESULTS WITH DIFFERENT ICA ALGORITHMS

Algorithm Max. ΔSNR (dB) Average ΔSNR (dB) Min. PEL (%) Average PEL (%) Min. PNR (%) Average PNR(%)
STFT with JADE 24.23 13.41 1.43 16.64 0.12 8.18
STFT with FastICA 23.97 14.04 1.03 14.02 0.11 6.58
STFT with Infomax ICA 23.56 13.68 1.49 16.54 0.17 8.37
DCT+AM with JADE 22.62 14.10 1.55 11.07 0.52 8.56
DCT+AM with FastICA 22.89 14.09 0.59 9.03 0.53 10.00
DCT+AM with Infomax ICA 22.35 14.37 1.04 9.47 0.49 8.15

where SNRo is the output SNR after running the algorithm
and SNRi is the SNR before separation. The output SNR is
defined as

SNRo = 10 log
10

[ ∑
n I2(n)∑

n(I(n) −O(n))2

]
(21)

where O(n) is the estimated signal and I(n) is the signal re-
synthesized after applying the ideal mask. The SNR before
separation is defined as the ratio between the desired signal
and the interfering signals in the recorded masked mixtures.
Percentage of energy loss and percentage of noise residue are
respective defined as

PEL =

∑
n e2

1
(n)∑

n I2(n)
(22)

PNR =

∑
n e2

2
(n)∑

n O2(n)
(23)

where e1(n) denotes the signal present in I(n) but absent in
O(n) and e2(n) denotes the signal present in O(n) but absent
in I(n). PEL can be considered as a weighted sum of the
T-F unit power present in the ideal mask but absent in the
estimated mask and PNR as a weighted sum of the T-F unit
power present in the estimated mask but absent in the ideal
mask.

B. Simulation Results
We tested our algorithm with different speech mixtures

and musical stereo mixtures obtained from [15], [16]. We
ran extensive simulations of more than 1500 input signal
combinations for each of the following variations of the
algorithm in Matlab:

1) STFT with JADE
2) STFT with FastICA
3) STFT with Infomax ICA
4) DCT+AM with JADE
5) DCT+AM with FastICA
6) DCT+AM with Infomax ICA

JADE, FastICA and Infomax implementations in Matlab were
downloaded from ICA Central website [17]. The value τ = 1
was used for the parameter in (8) and (9). Typical binary mask
outputs generated by the algorithm for a simulation with 3
sources is shown in Figure 1. The top two rows of masks
are the ideal masks for the respective source and the last row
shows the estimated masks. It can be seen that the estimated
masks are very similar to the ideal masks, especially at the
lower frequencies, due to the higher frequency resolution there.
The simulation results are presented in Table I. It can be seen
that the performance of both the original and the improved
method does not depend much on the ICA algorithm used.
Our method shows upto 5% increase in average improvement
in SNR while the peak SNR improvement is reduced by
upto 4%. Significant improvements of upto 42% are seen
in average percentage of energy loss and upto 33% in peak
percentage of energy loss, in the case of the Infomax ICA
algorithm. This means that the estimated signals have much
more spectral content of the original sources. However, this
has simultaneously resulted in increased percentages of noise
residue indicating that increased signal content is at the cost
of increased residual interference from other sources.
Subjective listening tests have shown a clear improvement

in the clarity of the estimated sources using the improved algo-
rithm, with lesser background interference from other sources.
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Musical noises (artifacts) are markedly reduced, particularly
due to the temporal mask continuity.

VI. CONCLUSION
Underdetermined blind source separation is among the more

complex problems in the area of blind source separation.
There are currently existing algorithms that perform under-
determined blind source separation of stereo mixtures using
independent component analysis and binary time-frequency
masking. Research in auditory scene analysis has shown that
human audition uses time-frequency representation with vari-
able frequency resolution. Inspired by this, a time-frequency
transform with a variable frequency based on the discrete
cosine transform and amplitude modulation is suggested in
this paper. Also, a method for perfect signal reconstruction
and a way to exploit short time stationarity have been sug-
gested. Simulation results indicate significant improvements
in objective criteria like percentage of energy loss and SNR
improvement. Subjective listening tests indicate a marked
improvement in estimated signal quality with slightly reduced
interference and greatly reduced artifacts. As further research,
this method can be extended to the convolutive mixing model.
Also, time-frequency transforms other than the DCT can be
used to generate a variable frequency resolution.
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